[P2996][USACO10NOV]拜访奶牛Visiting Cows (树形DP)
之前写在洛谷,结果没保存,作废……
听说考前写题解RP++哦
思路
很容易想到是
树形DP
如果树形DP不知道是什么的话推荐百度一下
我在这里用vector储存边
设状态f[i][0]为i点不访问,f[i][1]为i点访问
那么f[u][1] += f[y][0]表示u点要访问,(u,y)有连边
f[u][0] += max(f[v][0], f[v][1])表示u点不访问,(u,y)有连边
上面就是我们的转移方程了
介绍一下vector吧
vector是STL里的一个向量容器
也叫动态数组
就是不定长的数组
用来储存边非常好用
因此我在这里用vector给大家演示一下
代码
#include<bits/stdc++.h>//万能头
#define ll long long//作废
using namespace std;//标准头
#define N 50005
int f[N][];//DP
vector<int>son[N];//建图
bool v[N];//标记是否访问
inline int read() {
int f = , x = ; char ch;
do { ch = getchar(); if (ch == '-')f = -; } while (ch<'' || ch>'');
do { x = x * + ch - ''; ch = getchar(); } while (ch >= ''&&ch <= '');
return f * x;
}//读入优化 不解释
int dp(int u)//以u为根节点
{
f[u][] = ;//初始值1
for (int i=;i<son[u].size();i++)//用vector访问每一个点
{
int y=son[u][i];//y为下一个要搜的点 即子节点
if(!v[y]) //如果子节点没被访问
{
v[y]=true;//标记
dp(y);//递归访问
f[u][]+=max(f[y][],f[y][]); //转移方程 上面有解释
f[u][]+=f[y][];
}
}
}
int main()
{
int n=read();
for(int i=;i<n;i++)
{
int x=read(),y=read();
son[x].push_back(y);//用vector建边
son[y].push_back(x);
}
memset(v,,sizeof(v));memset(f,,sizeof(f));
v[]=true;//初始值
dp();//以1为根
printf("%d\n",max(f[][],f[][])); //输出
return ;
}
[P2996][USACO10NOV]拜访奶牛Visiting Cows (树形DP)的更多相关文章
- 洛谷 P2996 [USACO10NOV]拜访奶牛Visiting Cows
P2996 传送门 题意: 给你一棵树,每一条边上最多选一个点,问你选的点数. 我的思想: 一开始我是想用黑白点染色的思想来做,就是每一条边都选择一个点. 可以跑两边一遍在意的时候染成黑,第二遍染成白 ...
- 洛谷P2996 [USACO10NOV]拜访奶牛Visiting Cows
题目 树形dp 设f[i][j]表示走到第i号节点的最大权值 j为0/1表示这个点选或者不选 如果这个点不选 就从他的子树里的选或者不选选最大 如果这个点选 就加上他子树的不选 f[x][0] += ...
- 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)
P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP
[Usaco2010 Mar]gather 奶牛大集会 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1 ...
- 【BZOJ1827】[Usaco2010 Mar]gather 奶牛大集会 树形DP
[BZOJ][Usaco2010 Mar]gather 奶牛大集会 Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来 ...
- 2018.07.22 洛谷P2986 伟大的奶牛聚集(树形dp)
传送门 给出一棵树,树有边权和点权,若选定一个点作为中心,这棵树的代价是所有点权乘上到根的距离的和.求代价最小. 解法:一道明显的换根dp" role="presentation& ...
- BZOJ 1827: [Usaco2010 Mar]gather 奶牛大集会 树形DP + 带权重心
Description Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,0 ...
- luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp
$k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...
随机推荐
- java 学习中出过的错误
1. 运行异常 C:\Users\plan-B\java>java TapeDeckTestDrive.class 错误: 找不到或无法加载主类 TapeDeckTestDrive.class
- rpm 命令使用 和 lsof -p 1406 使用
#安装RPM -v 显示详细信息 -h 显示进度 -i 安装 -U 升级 -q 查询 -ql 查看rpm 包装的文件 - qf 查看命令属于哪个RPM 包 -qi 查看RPM包的详细信息 [root@ ...
- bootstrap的模拟单选按钮
<div class="btn-group" data-toggle="buttons" id="radio"> <lab ...
- ReSharper 8 & 9
ronle ZoJzmeVBoAv9Sskw76emgksMMFiLn4NM 9: admin@youbaozang.com SpFEMUSrPM0AGupqlNs6J1Ey7HrjpJZy admi ...
- vue-app开发入门
vue的中文文档在这里 1. 简单地引用vue.js 使用vue框架最简单的方式就是写一个HTML页面然后引用vue.js啦. 使用<script> 标签就可以将vue.js导入并且使用它 ...
- nginx 限制并发访问及请求频率
0. 1.参考 [工作]Nginx限制IP并发连接数和请求数的研究 Module ngx_http_limit_conn_module Module ngx_http_limit_req_module ...
- [转]Spring Boot修改最大上传文件限制:The field file exceeds its maximum permitted size of 1048576 bytes.
来源:http://blog.csdn.net/awmw74520/article/details/70230591 SpringBoot做文件上传时出现了The field file exceeds ...
- window上安装zabbix agent使用案例
下载对应的zabbix windows版本 因为zabbix server使用的版本为3.2.0版本 所以下载window 3.2的版本 https://www.zabbix.com/download ...
- LVM实现逻辑卷镜像
本文系统 CentOS 6.5 x64 LVM的镜像功能,有点儿类似于Raid1,即多块儿磁盘互相同步,确保资料不会丢失. 1.在此添加4块物理硬盘,每块2G空间 2.将sdb.sdc.sdd.sde ...
- python--类中的对象方法、类方法、静态方法的区别
1.对象方法:顾名思义,是对类实例化后的对象有效的,由对象调用 2.类方法:第一个参数是cls(当前类),是对当前类做的额外的处理,类方法需要用类去调用,而不是实例对象调用 3.静态方法:没有参数!没 ...