1.

 package algorithms.analysis14;

 import algorithms.util.In;
import algorithms.util.StdOut; /******************************************************************************
* Compilation: javac TwoSum.java
* Execution: java TwoSum input.txt
* Dependencies: StdOut.java In.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with N^2 running time. Read in N integers
* and counts the number of pairs that sum to exactly 0.
*
*
* Limitations
* -----------
* - we ignore integer overflow
*
*
* % java TwoSum 2Kints.txt
* 2
*
* % java TwoSum 1Kints.txt
* 1
*
* % java TwoSum 2Kints.txt
* 2
*
* % java TwoSum 4Kints.txt
* 3
*
* % java TwoSum 8Kints.txt
* 19
*
* % java TwoSum 16Kints.txt
* 66
*
* % java TwoSum 32Kints.txt
* 273
*
******************************************************************************/ public class TwoSum { // print distinct pairs (i, j) such that a[i] + a[j] = 0
public static void printAll(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
if (a[i] + a[j] == 0) {
StdOut.println(a[i] + " " + a[j]);
}
}
}
} // return number of distinct triples (i, j) such that a[i] + a[j] = 0
public static int count(int[] a) {
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
if (a[i] + a[j] == 0) {
cnt++;
}
}
}
return cnt;
} public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts();
Stopwatch timer = new Stopwatch();
int cnt = count(a);
StdOut.println("elapsed time = " + timer.elapsedTime());
StdOut.println(cnt);
}
}

The answer to this question is that we have discussed and used two classic algorithms,
mergesort and binary search, have introduced the facts that the mergesort is linearith-
mic and binary search is logarithmic.

2.

 package algorithms.analysis14;

 /******************************************************************************
* Compilation: javac TwoSumFast.java
* Execution: java TwoSumFast input.txt
* Dependencies: In.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with N log N running time. Read in N integers
* and counts the number of pairs that sum to exactly 0.
*
* Limitations
* -----------
* - we ignore integer overflow
*
*
* % java TwoSumFast 2Kints.txt
* 2
*
* % java TwoSumFast 1Kints.txt
* 1
*
* % java TwoSumFast 2Kints.txt
* 2
*
* % java TwoSumFast 4Kints.txt
* 3
*
* % java TwoSumFast 8Kints.txt
* 19
*
* % java TwoSumFast 16Kints.txt
* 66
*
* % java TwoSumFast 32Kints.txt
* 273
*
******************************************************************************/ import java.util.Arrays; import algorithms.util.In;
import algorithms.util.StdOut; public class TwoSumFast { // print distinct pairs (i, j) such that a[i] + a[j] = 0
public static void printAll(int[] a) {
int N = a.length;
Arrays.sort(a);
for (int i = 0; i < N; i++) {
int j = Arrays.binarySearch(a, -a[i]);
if (j > i) StdOut.println(a[i] + " " + a[j]);
}
} // return number of distinct pairs (i, j) such that a[i] + a[j] = 0
public static int count(int[] a) {
int N = a.length;
Arrays.sort(a);
int cnt = 0;
for (int i = 0; i < N; i++) {
int j = Arrays.binarySearch(a, -a[i]);
if (j > i) cnt++;
}
return cnt;
} public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts();
int cnt = count(a);
StdOut.println(cnt);
}
}

  

3.

 package algorithms.analysis14;

 import algorithms.util.In;
import algorithms.util.StdOut; /******************************************************************************
* Compilation: javac ThreeSum.java
* Execution: java ThreeSum input.txt
* Dependencies: In.java StdOut.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with cubic running time. Read in N integers
* and counts the number of triples that sum to exactly 0
* (ignoring integer overflow).
*
* % java ThreeSum 1Kints.txt
* 70
*
* % java ThreeSum 2Kints.txt
* 528
*
* % java ThreeSum 4Kints.txt
* 4039
*
******************************************************************************/ /**
* The <tt>ThreeSum</tt> class provides static methods for counting
* and printing the number of triples in an array of integers that sum to 0
* (ignoring integer overflow).
* <p>
* This implementation uses a triply nested loop and takes proportional to N^3,
* where N is the number of integers.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/14analysis">Section 1.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class ThreeSum { // Do not instantiate.
private ThreeSum() { } /**
* Prints to standard output the (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
*/
public static void printAll(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
for (int k = j+1; k < N; k++) {
if (a[i] + a[j] + a[k] == 0) {
StdOut.println(a[i] + " " + a[j] + " " + a[k]);
}
}
}
}
} /**
* Returns the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
* @return the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0
*/
public static int count(int[] a) {
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
for (int k = j+1; k < N; k++) {
if (a[i] + a[j] + a[k] == 0) {
cnt++;
}
}
}
}
return cnt;
} /**
* Reads in a sequence of integers from a file, specified as a command-line argument;
* counts the number of triples sum to exactly zero; prints out the time to perform
* the computation.
*/
public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts(); Stopwatch timer = new Stopwatch();
int cnt = count(a);
StdOut.println("elapsed time = " + timer.elapsedTime());
StdOut.println(cnt);
}
}

4.

 package algorithms.analysis14;

 /******************************************************************************
* Compilation: javac ThreeSumFast.java
* Execution: java ThreeSumFast input.txt
* Dependencies: StdOut.java In.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with N^2 log N running time. Read in N integers
* and counts the number of triples that sum to exactly 0.
*
* Limitations
* -----------
* - we ignore integer overflow
* - doesn't handle case when input has duplicates
*
*
* % java ThreeSumFast 1Kints.txt
* 70
*
* % java ThreeSumFast 2Kints.txt
* 528
*
* % java ThreeSumFast 4Kints.txt
* 4039
*
* % java ThreeSumFast 8Kints.txt
* 32074
*
* % java ThreeSumFast 16Kints.txt
* 255181
*
* % java ThreeSumFast 32Kints.txt
* 2052358
*
******************************************************************************/ import java.util.Arrays; import algorithms.util.In;
import algorithms.util.StdOut; /**
* The <tt>ThreeSumFast</tt> class provides static methods for counting
* and printing the number of triples in an array of distinct integers that
* sum to 0 (ignoring integer overflow).
* <p>
* This implementation uses sorting and binary search and takes time
* proportional to N^2 log N, where N is the number of integers.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/14analysis">Section 1.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class ThreeSumFast { // Do not instantiate.
private ThreeSumFast() { } // returns true if the sorted array a[] contains any duplicated integers
private static boolean containsDuplicates(int[] a) {
for (int i = 1; i < a.length; i++)
if (a[i] == a[i-1]) return true;
return false;
} /**
* Prints to standard output the (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
* @throws IllegalArgumentException if the array contains duplicate integers
*/
public static void printAll(int[] a) {
int N = a.length;
Arrays.sort(a);
if (containsDuplicates(a)) throw new IllegalArgumentException("array contains duplicate integers");
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
int k = Arrays.binarySearch(a, -(a[i] + a[j]));
if (k > j) StdOut.println(a[i] + " " + a[j] + " " + a[k]);
}
}
} /**
* Returns the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
* @return the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0
*/
public static int count(int[] a) {
int N = a.length;
Arrays.sort(a);
if (containsDuplicates(a)) throw new IllegalArgumentException("array contains duplicate integers");
int cnt = 0;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
int k = Arrays.binarySearch(a, -(a[i] + a[j]));
if (k > j) cnt++;
}
}
return cnt;
} /**
* Reads in a sequence of distinct integers from a file, specified as a command-line argument;
* counts the number of triples sum to exactly zero; prints out the time to perform
* the computation.
*/
public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts();
int cnt = count(a);
StdOut.println(cnt);
}
}

算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-002如何改进算法的更多相关文章

  1. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-005计测试算法

    1. package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; / ...

  2. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-007按位置,找出数组相关最大值

    Given an array a[] of N real numbers, design a linear-time algorithm to find the maximum value of a[ ...

  3. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-006BitonicMax

    package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; /*** ...

  4. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-004计算内存

    1. 2. 3.字符串

  5. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-003定理

    1. 2. 3. 4. 5. 6.

  6. 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-001分析步骤

    For many programs, developing a mathematical model of running timereduces to the following steps:■De ...

  7. 算法Sedgewick第四版-第1章基础-001递归

    一. 方法可以调用自己(如果你对递归概念感到奇怪,请完成练习 1.1.16 到练习 1.1.22).例如,下面给出了 BinarySearch 的 rank() 方法的另一种实现.我们会经常使用递归, ...

  8. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)

    一.介绍 1.算法的时间和空间间复杂度 2.特点 Running time is insensitive to input. The process of finding the smallest i ...

  9. 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-007归并排序(自下而上)

    一. 1. 2. 3. 二.代码 package algorithms.mergesort22; import algorithms.util.StdIn; import algorithms.uti ...

随机推荐

  1. Topshelf 和 Katana:统一的 Web 和服务体系结构

    Topshelf 和 Katana:统一的 Web 和服务体系结构 Wes McClure 下载代码示例 使用 IIS 托管 ASP.NET Web 应用程序已成为业界标准十年有余.构建此类应用程序的 ...

  2. 微信浏览器HTTP_USER_AGENT判断

    微信公众平台开发 微信公众平台开发者 微信公众平台开发模式 微信浏览器 HTTP_USER_AGENT作者:方倍工作室 原文:http://www.cnblogs.com/txw1958/archiv ...

  3. DataGridView绑定数据源的几种方式

    使用DataGridView控件,可以显示和编辑来自多种不同类型的数据源的表格数据. 将数据绑定到DataGridView控件非常简单和直观,在大多数情况下,只需设置DataSource属性即可.在绑 ...

  4. windows文件名非法字符过滤检测-正则表达式

    过滤文件名非法字符 windows现在已知的文件名非法字符有 \ / : * ? " < > | var reg = new RegExp('[\\\\/:*?\"&l ...

  5. UVALive - 5031 Graph and Queries (并查集+平衡树/线段树)

    给定一个图,支持三种操作: 1.删除一条边 2.查询与x结点相连的第k大的结点 3.修改x结点的权值 解法:离线倒序操作,平衡树or线段树维护连通块中的所有结点信息,加个合并操作就行了. 感觉线段树要 ...

  6. 学习动态性能表(20)--v$waitstat

    学习动态性能表 第20篇--V$WAITSTAT  2007.6.15 本视图保持自实例启动所有的等待事件统计信息.常用于当你发现系统存在大量的"buffer busy waits" ...

  7. 根据VM的TAG开停机

    公有云一个非常大的优势,就是可以根据需求进行开停机.由于计费是按时进行的,从而实现节省成本. Azure上用脚本按时开停机已经有很多部署的案例.本文将介绍采用VM Tag中规定的时间进行开停机的脚本. ...

  8. JSF页面中的JS取得受管bean的数据(受管bean发送数据到页面)

    JSF中引入jsf.js文件之后,可以拦截jsf.ajax.request请求.一直希望有一种方法可以像jquery的ajax一样,能在js中异步取得服务器端发送的数据.无奈标准JSF并没有提供这样的 ...

  9. [转载]网络虚拟化中的 offload 技术:LSO/LRO、GSO/GRO、TSO/UFO、VXLAN

    offload 现在,越来越多的网卡设备支持 offload 特性,来提升网络收/发性能.offload 是将本来该操作系统进行的一些数据包处理(如分片.重组等)放到网卡硬件中去做,降低系统 CPU ...

  10. NAND FLASH 驱动分析

    NAND FLASH是一个存储芯片 那么: 这样的操作很合理"读地址A的数据,把数据B写到地址A" 问1. 原理图上NAND FLASH和S3C2440之间只有数据线,       ...