poj3585 Accumulation Degree[树形DP换根]
思路其实非常简单,借用一下最大流求法即可。。。默认以1为根时,$f[x]$表示以$x$为根的子树最大流。转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可。换根的时候由頂向下递推转移,很容易得知推法(不说了。唯一需要注意的换根时原来度数为1的根转移为另一个子节点时,需要特判。
RE记录:???poj玄学RE,手写_min带强制同类型转换才AC,用自带的就RE。嘛,,不管了。代码奇丑无比。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define mst(x) memset(x,0,sizeof x)
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}min
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+;
const ll INF=1ll<<;
int T,n;
struct edge{
int to,nxt;ll w;
}G[N<<];
int Head[N],degree[N],tot;
ll f[N],ans;
inline void Addedge(int x,int y,int z){
G[++tot].to=y,G[tot].nxt=Head[x],Head[x]=tot,G[tot].w=z;++degree[x];
G[++tot].to=x,G[tot].nxt=Head[y],Head[y]=tot,G[tot].w=z;++degree[y];
}
void dfs1(int x,int fa){
for(register int j=Head[x],y=G[j].to;j;j=G[j].nxt,y=G[j].to)if(y^fa)dfs1(y,x),f[x]+=_min((degree[y]==?INF:f[y]),G[j].w);
}
#define fa G[tmp].to
void dfs2(int x,int tmp){
if(f[x])MAX(ans,f[x]=f[x]+_min((degree[fa]==?INF:(f[fa]-_min(f[x],G[tmp].w))),G[tmp].w));
for(register int j=Head[x],y=G[j].to;j;j=G[j].nxt,y=G[j].to)if(y^fa)dfs2(y,j^);
}
#undef fa
int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(T);while(T--){
read(n);int x,y,z;
mst(Head),mst(degree),mst(f);tot=;ans=;
for(register int i=;i<n;++i)read(x),read(y),read(z),Addedge(x,y,z);
dfs1(,);dfs2(,);
printf("%lld\n",ans);
}
return ;
}
poj3585 Accumulation Degree[树形DP换根]的更多相关文章
- poj3585 Accumulation Degree(树形dp,换根)
题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...
- $Poj3585\ Accumulation Degree$ 树形$DP/$二次扫描与换根法
Poj Description 有一个树形的水系,由n-1条河道与n个交叉点组成.每条河道有一个容量,联结x与y的河道容量记为c(x,y),河道的单位时间水量不能超过它的容量.有一个结点是整个水系的发 ...
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- [题解](树形dp/换根)小x游世界树
2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...
- POJ3585:Accumulation Degree(换根树形dp)
Accumulation Degree Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3425 Accepted: 85 ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- POJ3585 Accumulation Degree (树形DP-二次扫描与换根)
本题属于不定根的树形DP,若以每个节点为根求解一次,复杂度太高,所以可以用换根的技巧. d[u]表示以u为根向下可以流的最大流量,这个是比较好求的,直接遍历到叶子节点,由子节点信息更新父节点.然后进行 ...
- POJ3585 Accumulation Degree【换根dp】
题目传送门 题意 给出一棵树,树上的边都有容量,在树上任意选一个点作为根,使得往外流(到叶节点,叶节点可以接受无限多的流量)的流量最大. 分析 首先,还是从1号点工具人开始$dfs$,可以求出$dp[ ...
随机推荐
- java jdk和android sdk的安装以及环境变量的配置
安卓环境变量设置 (烦)http://wenku.baidu.com/link?url=QRwpFhP8d0yJorhcvuZPrz3lNFQW-uwYg6TlZtv6uen6_SVsvRrzf0UJ ...
- VS2010 fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
VS2010在经历一些更新后,建立Win32 Console Project时会出“error LNK1123” 错误,解决方案为将 项目|项目属性|配置属性|清单工具|输入和输出|嵌入清单 “是”改 ...
- RMQ with Shifts(线段树)
RMQ with Shifts Time Limit:1000MS Memory Limit:65535KB 64bit IO Format:%I64d & %I64u Pra ...
- json-lib-2.4-jdk15.jar 报错 net.sf.json.JSONException: There is a cycle in the hierarchy!错误解决方案(Hibernate)
使用hibernate容易出现该问题,主要是由于pojo类属性存在级联关系.比如说员工和部门,在员工表里面有部门属性,而在部门表里面有个员工集合,这样就存在了嵌套引用的问题了,就会抛出这个异常. 解决 ...
- Django利用form进行显示
form的显示部分主要分为2部分:1.统一显示(表单里的所有字段): a.{{form.as_table}} b.{{form.as_p}}2.显示部分字段: {{ field.label_tag } ...
- 18.Django原生SQL语句查询返回字典
在django中执行自定义语句的时候,返回的结果是一个tuple ,并我不是我所期望的dict.当结果是tuple 时,如果要取得数据,必须知道对应数据在结果集中的序号,用序号的方式去得到值. 如果是 ...
- JavaScript中的this用法
最近看了许多JavaScript源代码,发现this经常出现,于是对this这个非常特殊的关键词标识符进行总结. 题外话: 1.当函数被调用时,一个activation record[过程活动记录 - ...
- [Java面试一]Spring总结以及在面试中的一些问题.(转发:http://www.cnblogs.com/wang-meng/p/5701982.html)
1.谈谈你对spring IOC和DI的理解,它们有什么区别? IoC Inverse of Control 反转控制的概念,就是将原本在程序中手动创建UserService对象的控制权,交由Spri ...
- eclipse安装Activiti Designer插件(转载:http://blog.csdn.net/qq_33547950/article/details/54926435)
为了完成毕业设计,需要学习Activiti.万事开头难,果然刚开始就遇到了问题.<Activiti实战>和视频教程里提供的安装Activiti Designer插件方法(即下文方法一)不能 ...
- linux后台开发必备技能
一.linux和os: 1.命令:netstat tcpdump ipcs ipcrm 这四个命令的熟练掌握程度基本上能体现实际开发和调试程序的经验 2.cpu 内存 硬盘 等等与系统性能调试相关的 ...