Ynoi2016 炸脖龙重题了。

BZOJ 5394。

首先是扩展欧拉定理:

一开始傻掉了……递归的层数和区间长度无关……也就是说我们每一次直接暴力递归求解子问题一定不会超过$logP$层,因为当模数变成$1$了的时候,不管怎么乘方都不会再变化了。

然后要注意$b < \phi (P)$的情况,在快速幂的时候判断一下,如果超过了$\phi (P)$,那么就再加上一个$P$。

对于区间修改,树状数组或者线段树均可,每一层直接查询。

一共有不超过$logP$层,每一层有$logn$的开销查询元素,所以最后的复杂度是$O(Maxn + qlogP * logn)$。

另外,BZOJ上要把$pri$开成一半才不会爆空间……

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 5e5 + ;
const int M = 2e7 + ;
const int Maxn = 2e7; int n, qn, pCnt = , pri[M / ];
ll a[N], phi[M];
bool np[M]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void sieve() {
phi[] = ;
for(int i = ; i <= Maxn; i++) {
if(!np[i]) pri[++pCnt] = i, phi[i] = i - ;
for(int j = ; j <= pCnt && pri[j] * i <= Maxn; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
phi[i * pri[j]] = phi[i] * (pri[j] - );
}
}
} namespace Bit {
ll s[N]; #define lowbit(p) (p & (-p)) inline void modify(int p, ll v) {
for(; p <= n; p += lowbit(p))
s[p] += v;
} inline ll query(int p) {
ll res = ;
for(; p > ; p -= lowbit(p))
res += s[p];
return res;
} } using namespace Bit; inline ll fpow(ll x, ll y, ll P) {
ll res = ; bool tag = , tagx = ;
for(; y > ; y >>= ) {
if(y & ) {
res = res * x;
tag |= tagx;
if(res >= P) res %= P, tag = ;
}
if(x >= P) x %= P, tagx = ;
x = x * x;
if(x >= P) x %= P, tagx = ;
}
return res + (tag ? P : );
} ll solve(int x, int y, ll P) {
if(P == ) return ;
if(x > y) return ;
ll val = a[x] + query(x), cur = solve(x + , y, phi[P]);
return fpow(val, cur, P);
} int main() {
sieve();
read(n), read(qn);
for(int i = ; i <= n; i++) read(a[i]);
for(int op, x, y; qn--; ) {
read(op), read(x), read(y);
if(op == ) {
ll v; read(v);
modify(x, v), modify(y + , -v);
} else {
ll P; read(P);
printf("%lld\n", solve(x, y, P) % P);
}
}
return ;
}

Luogu 3934 Nephren Ruq Insania的更多相关文章

  1. 洛谷3934:Nephren Ruq Insania——题解

    https://www.luogu.org/problemnew/show/P3934 题面自己读吧(滑稽. 看到这道题就能够想到BZOJ4869:[SHOI2017]相逢是问候我们曾经用过的哲学扩展 ...

  2. [洛谷3934]P3934 Nephren Ruq Insania题解

    先放个奈芙莲 解法 看到这种题目就知道是欧拉降幂,然后根据某玄学证明,递归欧拉降幂从l到r不会超过\(\Theta(log_n)\),所以直接递归解决,然后区间修改直接树状数组维护一下 然后就A了 代 ...

  3. [洛谷P4118][Ynoi2016]炸脖龙I([洛谷P3934]Nephren Ruq Insania)

    题目大意:有$n$个数,每个数为$s_i$,两个操作: $1\;l\;r\;x:$表示将区间$[l,r]$内的数加上$x$ $2\;l\;r\;p:$表示求$s_l^{s_{l+1}^{^{s_{l+ ...

  4. noip模拟赛 Nephren Ruq Insania

    题目背景 大样例下发链接: https://pan.baidu.com/s/1nuVpRS1 密码: sfxg 注意:本题大样例4的输出文件修改为 https://pan.baidu.com/s/1b ...

  5. noip2017考前整理(未完)

    快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...

  6. Luogu 魔法学院杯-第二弹(萌新的第一法blog)

    虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> ...

  7. luogu p1268 树的重量——构造,真正考验编程能力

    题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题 ...

  8. [luogu P2170] 选学霸(并查集+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2170 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一 ...

  9. [luogu P2647] 最大收益(贪心+dp)

    题目传送门:https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品. ...

随机推荐

  1. 201621123014《Java程序设计》第十四周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...

  2. mysql字段设计坑

    对varchar, char类型的字段进行排序 把价格设计成decimal的时候,要注意 "有效位数", "小数位数", 不然会发现,插入的时候最多达到上限

  3. python 字符串大小写相关函数

    改写:(都不会改变原字符串) s = 'hEllo wOrld' s Out[3]: 'hEllo wOrld' s.upper()#全部大写 Out[4]: 'HELLO WORLD' s Out[ ...

  4. 242. Valid Anagram Add to List

    Given two strings s and t, write a function to determine if t is an anagram of s. For example,s = &q ...

  5. Python 2.7_多进程获取简书专题数据(一)

    学python几个月了正好练练手,发现问题不断提高,先从专题入手,爬取些数据,一开始对简书网站结构不熟悉,抓取推荐,热门,城市3个导航栏,交流发现推荐和热门是排序不同,url会重复,以及每个专题详情页 ...

  6. 洛谷 P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper

    题目描述 A little known fact about Bessie and friends is that they love stair climbing races. A better k ...

  7. 如何测试远端TCP和UDP端口是否开放

    项目遇到问题时首先排查网络是否正常是一个重要的方面.遇到很多次,同事找我解决问题,最后发现却是IP或端口不通的问题.然而就是这么个简单的问题,对方却花费了甚至一天的时间排查原因. 现在大部分项目都是用 ...

  8. Erlang tool -- lager overload protection

    log 这个事, 说大不大说小又不小. 大点的, 可以用scribe flume 这样的系统去做, 小点的, 也就打印一个调试信息而已. 在Erlang 中, log 这事情确实比较伤, error_ ...

  9. (转)红帽 Red Hat Linux相关产品iso镜像下载【百度云】【更新6.7 Boot Disk】

    不为什么,就为了方便搜索,特把红帽EL 5.EL6 的各版本整理一下,共享出来. RedHat Enterprise Server 6.7 for i386 Boot Disk:rhel-server ...

  10. Boost.Asio基本原理(CSDN也有Markdown了,好开森)

    Boost.Asio基本原理 这一章涵盖了使用Boost.Asio时必须知道的一些事情.我们也将深入研究比同步编程更复杂.更有乐趣的异步编程. 网络API 这一部分包含了当使用Boost.Asio编写 ...