Information Entropy


Time Limit: 2 Seconds     
Memory Limit: 65536 KB      Special Judge


Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information.
The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish
from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variableX with possible values
{x1, x2, ..., xn} and probability mass functionP(X) as:

rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

rev=2.5.3" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:14px; width:15px; margin-right:-0.02em">

rev=2.5.3" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:14px; width:6px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:9px; width:6px; margin-right:0.07em">

rev=2.5.3" alt="" style="height:14px; width:6px; margin-right:0.01em">

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" width="6" height="21" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

Where b is the base of the logarithm used. Common values of b are 2, Euler's numbere, and 10. The unit of entropy is
bit for b = 2, nat for b = e, and
dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

rev=2.5.3" alt="" style="height:13px; width:10px; vertical-align:-4px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:14px; width:9px; margin-right:0.04em">

rev=2.5.3" width="15" height="5" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">

rev=2.5.3" width="6" height="14" alt="" style="height:14px; width:6px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:9px; width:7px; margin-right:0.04em">

rev=2.5.3" alt="" style="height:13px; width:10px; vertical-align:-4px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:1px; width:1px; margin-right:0.24em">

rev=2.5.3" alt="" style="height:9px; width:6px; margin-right:0em">

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:13px; width:11px; vertical-align:-4px; margin-left:-0.03em; margin-right:0em">

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer
T
indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a stringS. The string
S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1,P2, ..,
PN. Pi means the probability of thei-th value in percentage and the sum of
Pi will be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000
题意:给你N个数和一个字符串str。

若str为bit。则计算sigma( - log2a[i])(1 <= i <= N);            str为nat时,计算sigma(- loga[i])(1 <= i <= N);           str为dit时,计算sigma(- log10a[i])(1 <= i <= N)。


AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#define LL long long
#define INF 0x3f3f3f3f
#define MAXN 1000
#define MAXM 100000
using namespace std;
int main()
{
int t;
int N;
char str[10];
double a[110];
scanf("%d", &t);
while(t--)
{
scanf("%d%s", &N, str);
double sum = 0;
for(int i = 0; i < N; i++)
scanf("%lf", &a[i]), sum += a[i];
double ans = 0;
if(strcmp(str, "bit") == 0)
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log2(a[i] / sum) * (a[i] / sum);
}
}
else if(strcmp(str, "nat") == 0)
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log(a[i] / sum) * (a[i] / sum);
}
}
else
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log10(a[i] / sum) * (a[i] / sum);
}
}
printf("%.12lf\n", ans);
}
return 0;
}

zoj 3827 Information Entropy 【水题】的更多相关文章

  1. ZOJ 3827 Information Entropy 水题

    Information Entropy Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/sh ...

  2. ZOJ 3827 Information Entropy 水

    水 Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Informati ...

  3. ZOJ 3827 Information Entropy (2014牡丹江区域赛)

    题目链接:ZOJ 3827 Information Entropy 依据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <strin ...

  4. 2014 牡丹江现场赛 i题 (zoj 3827 Information Entropy)

    I - Information Entropy Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %l ...

  5. ZOJ 3827 Information Entropy(数学题 牡丹江现场赛)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5381 Information Theory is one of t ...

  6. ZOJ3827 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江I称号 Information Entropy 水的问题

    Information Entropy Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge Informatio ...

  7. [ACM] ZOJ 3819 Average Score (水题)

    Average Score Time Limit: 2 Seconds      Memory Limit: 65536 KB Bob is a freshman in Marjar Universi ...

  8. ZOJ 2679 Old Bill ||ZOJ 2952 Find All M^N Please 两题水题

    2679:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1679 2952:http://acm.zju.edu.cn/onli ...

  9. 2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy

    Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information ...

随机推荐

  1. SpringMVC + Hibernate + MySQL 的简易网页搭建(Control实现篇)

    在完成Dao层的实现之后,接下来我们需要继续开发我们网页的Control层以及View层. 从开发网页的角度来说: 1. Control层之下的Dao层和Service层可以看做是一个网页的底层负责与 ...

  2. 蓝桥杯模拟赛 引爆炸弹-并查集+DFS

    引爆炸弹 在一个 n×m的方格地图上,某些方格上放置着炸弹.手动引爆一个炸弹以后,炸弹会把炸弹所在的行和列上的所有炸弹引爆,被引爆的炸弹又能引爆其他炸弹,这样连锁下去. 现在为了引爆地图上的所有炸弹, ...

  3. 状压DP【p1896】[SCOI2005]互不侵犯

    Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包 ...

  4. EasyUI Datagrid 单元格编辑

    3:对于单元格的编辑 $('#Units').datagrid({ pageNumber: 1, //url: "@ViewBag.Domain/Paper/GetQuestionUnit& ...

  5. 【bzoj1085】【 [SCOI2005]骑士精神】启发式剪枝+迭代加深搜索

    (上不了p站我要死了,侵权度娘背锅) 如果这就是启发式搜索的话,那启发式搜索也不是什么高级玩意嘛..(啪啪打脸) Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且 ...

  6. 什么是IIS并发连接数

    http://blog.csdn.net/leftfist/article/details/38407223  https://wk.baidu.com/view/2962d073f242336c1e ...

  7. 用CSS3产生动画效果

    相关属性: @keyframes规则:定义动画 语法:@keyframes animationname{keyframes-selector {CSS-style;}} animationname:动 ...

  8. [分享]在ubuntu9.10下实现开机自动登录并运行自己的图形程序

    在ubuntu9.10下实现开机自动登录并运行自己的图形界面程序(本人接触ubuntu时日不长,文中一些说法难免有错误和疏漏之处,还请大家不吝批评指正.)实现步骤分以下三大步:1. 实现ubuntu文 ...

  9. ElasticSearch 结构化搜索全文

    1.介绍 上篇介绍了搜索结构化数据的简单应用示例,现在来探寻 全文搜索(full-text search) :怎样在全文字段中搜索到最相关的文档. 全文搜索两个最重要的方面是: 相关性(Relevan ...

  10. P6 EPPM 安装和配置指南

    In This Section Installation and Configuration Guide Manual Installation Guides P6 Professional Inst ...