You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:

reads the number of intervals, their end points and integers c1, ..., cn from the standard input,

computes the minimal size of a set Z of integers which has at
least ci common elements with interval [ai, bi], for each i=1,2,...,n,

writes the answer to the standard output.

Input

The first line of the input contains an integer n (1 <= n
<= 50000) -- the number of intervals. The following n lines describe
the intervals. The (i+1)-th line of the input contains three integers
ai, bi and ci separated by single spaces and such that 0 <= ai <=
bi <= 50000 and 1 <= ci <= bi - ai+1.

Output

The output contains exactly one integer equal to the minimal size
of set Z sharing at least ci elements with interval [ai, bi], for each
i=1,2,...,n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
int u, v, w;
int nxt;
}edge[maxn];
int head[maxn];
int tot;
int dis[maxn];
bool vis[maxn];
void addedge(int u, int v, int w) {
edge[++tot].u = u; edge[tot].v = v; edge[tot].w = w;
edge[tot].nxt = head[u]; head[u] = tot;
}
void spfa() {
queue<int>q;
q.push(0);
vis[0] = 1; dis[0] = 0;
while (!q.empty()) {
int u = q.front(); q.pop(); vis[u] = 0;
for (int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v;
if (dis[v] < dis[u] + edge[i].w) {
dis[v] = dis[u] + edge[i].w;
if (!vis[v]) {
q.push(v); vis[v] = 1;
}
}
}
}
} int main() {
//ios::sync_with_stdio(0);
// int T; rdint(T);
// while (T--) {
ms(head); memset(dis, -0x3f, sizeof(dis));
ms(vis); tot = 0;
int maxx = 0; int n;
cin >> n;
for (int i = 1; i <= n; i++) {
int a, b, c; rdint(a); rdint(b); rdint(c);
addedge(a, b + 1, c); maxx = max(maxx, b + 1);
}
for (int i = 1; i <= maxx; i++) {
addedge(i, i - 1, -1); addedge(i - 1, i, 0);
}
spfa();
cout << dis[maxx] << endl;
// if (T)cout << endl;
// }
return 0;
}

Intervals POJ - 1201 差分约束的更多相关文章

  1. poj 1201 差分约束

    http://www.cnblogs.com/wangfang20/p/3196858.html 题意: 求集合Z中至少要包含多少个元素才能是每个区间[ai,bi]中的元素与Z中的元素重合个数为ci. ...

  2. POJ 1201 差分约束+SPFA

    思路: 差分约束,难在建图.(我是不会告诉你我刚学会SPFA的...) 把每个区间的ai–>bi连一条长度为ci的边. k–>k+1连一条长度为0的边. k+1–>k连一条长度为-1 ...

  3. POJ 1201 差分约束(集合最小元素个数)

    题意:       给你一个集合,然后有如下输入,a ,b ,c表示在范围[a,b]里面有至少有c个元素,最后问你整个集合最少多少个元素. 思路:       和HDU1384一模一样,首先这个题目可 ...

  4. Intervals poj 1201 差分约束系统

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22503   Accepted: 8506 Descri ...

  5. POJ 1384 Intervals (区间差分约束,根据不等式建图,然后跑spfa)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1384 Intervals Time Limit: 10000/5000 MS (Java/Others ...

  6. poj 3159(差分约束经典题)

    题目链接:http://poj.org/problem?id=3159思路:题目意思很简单,都与给定的条件dist[b]-dist[a]<=c,求dist[n]-dist[1]的最大值,显然这是 ...

  7. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  8. POJ - 3169 差分约束

    题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如         果最大距离无限大则输出 ...

  9. POJ 1201 Intervals(图论-差分约束)

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 20779   Accepted: 7863 Descri ...

随机推荐

  1. codeforces 628B B. New Skateboard (数论)

    B. New Skateboard time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  2. adt-bundle-windows-x86_64-20130522.zip 下载

    直接复制这个链接到迅雷下载即可:http://dl.google.com/android/adt/adt-bundle-windows-x86_64-20130522.zip

  3. Android学习路线01

    part1:Java 1.Java基础 2.Java面向对象 3.数组与集合,异常,常用类 4.Io流 5.多线程socket编程 6.数据库,网络传输,数据解析 part2:Android 1.An ...

  4. C++中getline的用法

    在看紫皮书的时候看到getline,然后查了查具体用法,记录下来. #include"iostream" #include"string" using name ...

  5. 2017.10.5北京清北综合强化班DAY5

    拼不出的数lost.in/.out/.cpp[问题描述]3 个元素的集合{5, 1,2} 的所有子集的和分别是0,1, 2, 3, 5, 6, 7, 8.发现最小的不能由该集合子集拼出的数字是4.现在 ...

  6. JAVA JDBC 读取配置文件链接数据库(oracle)

    ----db.properties-------- dbDriver = oracle.jdbc.driver.OracleDriverurl = jdbc:oracle:thin:@192.168. ...

  7. Hough变换原理

    Hough变换原理 一.简单介绍 Hough变换是图像处理中从图像中识别几何形状的基本方法之一.Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的 ...

  8. 使用Visual Studio进行单元测试-Part4

    本文主要介绍Visual Studio(2012+)单元测试框架的一些技巧: 如何模拟类的构造函数 优化代码,便于测试 一.如何模拟类的构造函数 1.1 被测代码 基础代码,IShape分别有Rect ...

  9. 洛谷【P1898】缘分计算

    我对模拟的理解:http://www.cnblogs.com/AKMer/p/9064018.html 题目传送门:https://www.luogu.org/problemnew/show/P189 ...

  10. MySQL5.7出现Your password has expired. To log in you must change it using a client that supports expir

    今天晚上本来想写bootstrap-fileinput插件集成fastdfs的文章,但是刚启动idea里面的QiYuAdmin就出现了错误: Your password has expired. To ...