ZOJ1027 Travelling Fee(DP+SPFA)
给一张有向无环图,边都有花费,从某点到某点走的那条路径上的那一条花费最多的边可以省掉,问从起点到终点的最少花费的多少,
往DP想的话,就可以写出这个状态dp[u][mx],表示到达u点已经省掉的花费为mx的最少花费。
用SPFA更新转移方程。。或者理解成队列+我为人人的转移。。其实这题这样子也能解有环图。
看了别人博客,发现还有三种解法:
- 枚举每一条边作为省掉的边,n次SPFA。这方法简洁,可惜想不出= =
- 跑Dijkstra,根据记录到每一点时的最长边更新,正确性不懂。。
- Floyd+DP:加个维度,dpk[0\1][u][v],第一维1和0分别表示省和没省最长边的最少花费,dp[1]的转移就是dp[1][u][v]=min(dp[0][u][k]+dp[1][k][v],dp[1][u][k]+dp[0][k][v]),初始dp[1][i][j]=0(<i,j>∈E),好厉害。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<string>
#include<algorithm>
using namespace std;
#define INF (1<<29)
int n,G[][];
int d[][];
bool vis[][];
struct Node{
int u,mx;
Node(int _u,int _mx):u(_u),mx(_mx){}
};
void SPFA(int vs){
for(int i=; i<n; ++i){
for(int j=; j<; ++j) d[i][j]=INF;
}
d[vs][]=;
memset(vis,,sizeof(vis));
vis[vs][]=;
queue<Node> que;
que.push(Node(vs,));
while(!que.empty()){
Node nd=que.front(); que.pop();
int u=nd.u,mx=nd.mx;
for(int v=; v<n; ++v){
if(G[u][v]==INF) continue;
if(G[u][v]>mx && d[v][G[u][v]]>d[u][mx]+mx){
d[v][G[u][v]]=d[u][mx]+mx;
if(!vis[v][G[u][v]]){
vis[v][G[u][v]]=;
que.push(Node(v,G[u][v]));
}
}
if(d[v][mx]>d[u][mx]+G[u][v]){
d[v][mx]=d[u][mx]+G[u][v];
if(!vis[v][mx]){
vis[v][mx]=;
que.push(Node(v,mx));
}
}
}
vis[u][mx]=;
}
}
int main(){
string name[],x[],y[],vs,vt;
int m,z[];
while(cin>>vs>>vt){
n=;
scanf("%d",&m);
for(int i=; i<m; ++i){
cin>>x[i]>>y[i]>>z[i];
name[n++]=x[i]; name[n++]=y[i];
}
sort(name,name+n);
n=unique(name,name+n)-name;
for(int i=; i<n; ++i){
for(int j=; j<n; ++j) G[i][j]=INF;
}
for(int i=; i<m; ++i){
int u=lower_bound(name,name+n,x[i])-name,v=lower_bound(name,name+n,y[i])-name;
G[u][v]=z[i];
}
SPFA(lower_bound(name,name+n,vs)-name);
int tv=lower_bound(name,name+n,vt)-name;
int res=INF;
for(int i=; i<; ++i) res=min(res,d[tv][i]);
printf("%d\n",res);
}
return ;
}
ZOJ1027 Travelling Fee(DP+SPFA)的更多相关文章
- ZOJ1232 Adventure of Super Mario(DP+SPFA)
dp[u][t]表示从起点出发,到达i点且用了t次magic boot时的最短时间, 方程如下: dp[v][t]=min(dp[v][t],dp[u][t]+dis[u][v]); dp[v][t] ...
- [luoguP3953] 逛公园(DP + spfa)
传送门 看到求方案数,应该很容易想到dp f[u][i]表示到点u,且比到u的最短距离多i的方案数 那么需要先预处理dis数组,spfa或者堆优化的dijk 因为考虑到dp的顺序,f[u][i]转移到 ...
- [luoguP1772] [ZJOI2006]物流运输(DP + spfa)
传送门 预处理cost[i][j]表示从第i天到第j天起点到终点的最短距离 f[i]表示前i天到从起点到终点的最短距离 f[0] = -K f[i] = min(f[i], f[j - 1] + co ...
- bzoj1003: [ZJOI2006]物流运输(DP+spfa)
1003: [ZJOI2006]物流运输 题目:传送门 题解: 可以用spfa处理出第i天到第j都走这条路的花费,记录为cost f[i]表示前i天的最小花费:f[i]=min(f[i],f[j-1] ...
- 取数字(dp优化)
取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- [Codeforces722E] Research Rover (dp+组合数学)
[Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...
- 6101 最优贸易 (双向spfa)
描述C国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的 ...
- Rikka with Subset HDU - 6092 (DP+组合数)
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some mat ...
随机推荐
- isinstance()判断数据类型
判断数据类型isinstance()l=[1,2,3]print(isinstance(l,list))#括号里面第一个填需要判断的数据,第二个是判断条件
- 孤荷凌寒自学python第六十一天在Fedora28版的linux系统上找搭建本地Mongodb数据服务
孤荷凌寒自学python第六十一天在Fedora28版的linux系统上找搭建本地Mongodb数据服务 (完整学习过程屏幕记录视频地址在文末) 今天是学习mongoDB数据库的第七天.成功在本地搭建 ...
- Leetcode 670.最大交换
最大交换 给定一个非负整数,你至多可以交换一次数字中的任意两位.返回你能得到的最大值. 示例 1 : 输入: 2736 输出: 7236 解释: 交换数字2和数字7. 示例 2 : 输入: 9973 ...
- svn 数据库 账号密码
47.106.107.201 云商传媒李孔文 2018/8/22 19:26:35 root 云商传媒李孔文 2018/8/22 19:26:39 sn123456 云商传媒李孔文 2018/8/22 ...
- 爬虫:Scrapy7 - Scrapy终端(Scrapy shell)
Scrapy 终端是一个交互终端,可以在未启动 spider 的情况下尝试及调试你的爬取代码.其本意是用来测试提取数据的代码,不过可以将其作为正常的 Python 终端,在上面测试任何 Python ...
- Linux中awk后面的RS, ORS, FS, OFS 含义
转载自http://blog.csdn.net/qq416647781/article/details/40649419 一.RS 与 ORS 差在哪 我们经常会说,awk是基于行列操作文本的 ...
- JSP/Servlet Web 学习笔记 DayThree
JSP内置对象 使用JSP语法可以存取这些内置对象来执行JSP网页的Servlet环境相互作用.内置对象其实是由特定的Java类所产生的.每一种内置对象都映射到一个特定的Java类或者端口,在服务器运 ...
- nginx限速白名单配置
在<nginx限制连接数ngx_http_limit_conn_module模块>和<nginx限制请求数ngx_http_limit_req_module模块>中会对所有的I ...
- 【Luogu】P2490黑白棋(博弈DP)
题目链接 题解链接 #include<cstdio> #include<cstring> #include<algorithm> #include<cstdl ...
- POJ 2195 Going Home | 带权二分图匹配
给个地图有人和房子 保证人==房子,每个人移动到房子处需要花费曼哈顿距离的代价 问让人都住在房子里最小代价 显然是个带权二分图最大匹配 转化成以一个网络,规定w是容量,c是代价 1.S向人连边,w=1 ...