【bzoj2190】: [SDOI2008]仪仗队

在第i行当且仅当gcd(i,j)=1 可以被看到

欧拉函数求和 没了

 /* http://www.cnblogs.com/karl07/ */
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
using namespace std; const int N=;
int phi[N];
int n,ans=; void Phi(){
phi[]=;
for (int i=;i<=n;i++){
if (!phi[i]){
for (int j=i;j<=n;j+=i){
if (!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
}
} int main(){
scanf("%d",&n);
Phi();
for (int i=;i<=n-;i++){
ans+=phi[i];
}
printf("%d\n",ans*+);
return ;
}

【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数的更多相关文章

  1. 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2190   裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...

  2. bzoj2190 [SDOI2008]仪仗队 - 筛法 - 欧拉函数

    作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图).    ...

  3. BZOJ2190 [SDOI2008]仪仗队(欧拉函数)

    与HDU2841大同小异. 设左下角的点为(1,1),如果(1,1)->(x,y)和(1,1)->(x',y')向量平行,那只有在前面的能被看见.然后就是求x-1.y-1不互质的数对个数. ...

  4. BZOJ2190 SDOI2008 仪仗队 gcd,欧拉函数

    题意:求从左下角能看到的元素个数 引理:对点(x,y),连线(0,0)-(x,y),元素个数为gcd(x,y)-1(中间元素) 即要求gcd(x,y)=1 求gcd(x,y)=1的个数 转化为2 \s ...

  5. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  6. [SDOI2008]仪仗队(欧拉函数)

    题目 [SDOI2008]仪仗队 解析 这个题,我也不知道他们的soltion是怎么写的这么长的. 我们发现我们一次看一条直线上的第一个点,也就是说,若两个点斜率\(k=\frac{y}{x}\)相同 ...

  7. P2158 [SDOI2008] 仪仗队(欧拉函数模板)

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  8. bzoj 2190 [SDOI2008]仪仗队(欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2190 [题意] n*n的正方形,在(0,0)格点可以看到的格子数目. [思路] 预处理 ...

  9. luogu P2158 [SDOI2008]仪仗队 (欧拉函数)

    欧拉函数裸题 可惜我太久没做题忘了欧拉函数是什么了... 注意判断一下n = 1的情况就好了 #include <cstdio> using namespace std; ; typede ...

随机推荐

  1. H264系列(9):H264中的时间戳(DTS和PTS)

    (1)Ffmpeg中的DTS 和 PTS H264里有两种时间戳:DTS(Decoding Time Stamp)和PTS(Presentation Time Stamp). 顾名思义,前者是解码的时 ...

  2. java继承 子类重写父类方法

    package com.addd; //多态 public class Sld { private String name = "zhangsan"; public Sld() { ...

  3. apache http 跳到https

    RewriteEngine OnRewriteCond %{HTTPS} !=onRewriteRule ^(.*) https://%{SERVER_NAME}/$1 [R,L]

  4. python去掉括号之间的字符

    在字符串中识别括号并删除括号及其中的内容括号包括 大中小 3种括号 输入为 1个字符串 s="我是一个人(中国人)[真的]{确定}"; 输出为 result = "我是一 ...

  5. Mediaplayer

    Mediaplayer报错 prepareAsync called in state 1     是因为在setDataSource之前调用了prepare.因为setDataSource放到了线程里 ...

  6. 关于web.xml中的<welcome-file-list>中的默认首页文件

    先看我的配置文件: <welcome-file-list> <welcome-file>index.html</welcome-file> </welcome ...

  7. Codeforces 1142B Lynyrd Skynyrd

    ---恢复内容开始--- 题意:给你一个排列p和数组a,有t组询问,每次询问一个区间的子序列中是否有p的一个循环排列. 思路:以p = [3, 1, 2]举例, 我们扫描数组b,假设当前数字是1,那么 ...

  8. Codeforces 1110D Jongmah (DP)

    题意:你有n个数字,范围[1, m],你可以选择其中的三个数字构成一个三元组,但是这三个数字必须是连续的或者相同的,每个数字只能用一次,问这n个数字最多构成多少个三元组? 解析:首先我们容易发现,我们 ...

  9. centos 端口iptables配置

    1.安装iptables yum install iptables* -y 2.打开端口 iptables -I INPUT -p tcp --dport -j ACCEPT 3.查看本机关于IPTA ...

  10. cakephp的优点

    1.接口传参非常简单,直接域名/控制器名/方法名/param1/param2