一、问题背景

   整数拆分,指把一个整数分解成若干个整数的和

  如 3=2+1=1+1+1  共2种拆分

  我们认为2+1与1+2为同一种拆分

二、定义

  在整数n的拆分中,最大的拆分数为m,我们记它的方案数为 f(n,m)

  即 n=x1+x2+······+xk-1+xk ,任意 x≤m

  在此我们采用递归递推法

三、递推关系

  1、n=1或m=1时

       拆分方案仅为 n=1 或 n=1+1+1+······

     f(n,m)=1

  2、n=m时

     S1选取m时,f(n,m)=1,即n=m

     S2不选取m时,f(n,m)=f(n,m-1)=f(n,n-1),此时讨论最大拆分数为m-1时的情况

     可归纳 f(n,m)=f(n,n-1)+1

  3、n<m时

     因为不能选取m,所以可将m看作n,进行n=m时的方案,f(n,m)=f(n,n)

  4、n>m时

     S1选取m时,f(n,m)=f(n-m,m),被拆分数因选取了m则变为n-m,且n-m中可能还能选取最大为m的数

     S2不选取m时,f(n,m)=f(n,m-1),此时讨论最大拆分数为m-1时的情况

     可归纳 f(n,m)=f(n,m-1)+f(n-m,m)

总递推式为

代码如下

 #include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std; int f(int n,int m)
{
if ((n!=)&&(m!=))
{
if (n>m) return f(n-m,m)+f(n,m-);
else return +f(n,n-);
}
else return ;
}
void work()
{
int n,m;
cin>>n>>m;
cout<<f(n,m);
}
int main()
{
freopen("cut.in","r",stdin);
freopen("cut.out","w",stdout);
work();
return ;
}

此外还有母函数法,具体参考

http://blog.chinaunix.net/uid-26548237-id-3503956.html

版权所有,转载请联系作者,违者必究

QQ:740929894

整数拆分问题_C++的更多相关文章

  1. HDU 4651 Partition(整数拆分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){    f[0 ...

  2. LightOJ 1336 Sigma Function(数论 整数拆分推论)

    --->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. ...

  3. LightOJ 1341 Aladdin and the Flying Carpet(整数拆分定理)

    分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e ...

  4. HDU1028 (整数拆分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. Pollard-Rho大整数拆分模板

    随机拆分,简直机智. 关于过程可以看http://wenku.baidu.com/link?url=JPlP8watmyGVDdjgiLpcytC0lazh4Leg3s53WIx1_Pp_Y6DJTC ...

  6. poj3181【完全背包+整数拆分】

    题意: 给你一个数n,在给你一个数K,问你这个n用1-k的数去组合,有多少种组合方式. 思路: 背包重量就是n: 那么可以看出 1-k就是重物,价值是数值,重量是数值. 每个重物可以无限取,问题转化为 ...

  7. HDU 1028 Ignatius and the Princess III(母函数整数拆分)

    链接:传送门 题意:一个数n有多少种拆分方法 思路:典型母函数在整数拆分上的应用 /********************************************************** ...

  8. LeetCode 343. 整数拆分(Integer Break) 25

    343. 整数拆分 343. Integer Break 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 每日一算法2019/5/2 ...

  9. LeetCode 343.整数拆分 - JavaScript

    题目描述:给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 题目分析 题目中"n 至少可以拆分为两个正整数的和",这个条件说 ...

随机推荐

  1. Go实现mqtt服务

    package main import ( "os" "log" "github.com/eclipse/paho.mqtt.golang" ...

  2. [Codeforces947D]Riverside Curio(思维)

    Description 题目链接 Solution 设S[i]表示到第i天总共S[i]几个标记, 那么满足S[i]=m[i]+d[i]+1 m[i]表示水位上的标记数,d[i]表示水位下的标记数 那么 ...

  3. 机器学习笔记(一)—— 线性回归问题与Matlab求解

    给你多组数据集,例如给你很多房子的面积.房子距离市中心的距离.房子的价格,然后再给你一组面积. 距离,让你预测房价.这类问题称为回归问题. 回归问题(Regression) 是给定多个自变量.一个因变 ...

  4. idea录制宏

    录制一个热部署的快捷键 1.打开Edit-->Macros-->statr Macro Recording 打开之后idea右下角就会出现一个小圆点 然后就可以开始录制自己想要的快捷键 按 ...

  5. Android MultiType第三方库的基本使用和案例+DiffUtil的简单用法

    1.MultiType简单介绍 1.1.MultiType用于比较复杂的页面. 如下图,今日头条用到了MultiType处理各种复杂的页面.    这种还是比较简单的类型.因为一个页面也就这种类型. ...

  6. WPF 加载等待动画

    原文:WPF 加载等待动画 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_29844879/article/details/80216587 ...

  7. 5. css定位 居中

    1.准备工作 (1)添加背景图片 background: url('images/grass.png') (2)背景图片格式 background-size:contain; #完全限制在方框 #co ...

  8. POJ 3461 Oulipo(字符串hash)

    题目链接 字符串hash判断字符串是否相等. code #include<cstdio> #include<algorithm> #include<cstring> ...

  9. web项目中获取spring的bean对象

    Spring是一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架,如何在程序中不通过注解的形式(@Resource.@Autowired)获取Spring配置的bean呢? Bean工厂(c ...

  10. HTML DOM简易学习笔记

    文字版:https://github.com/songzhenhua/github/blob/master/HTML DOM简易学习笔记.txt 学习地址:http://www.w3school.co ...