++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树

    struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;
}

填入每个节点的next指针,如果没有右边的节点,那么这个next指针设置为NULL。

初始时候所有歌next指针都设置成NULL。

Note:

  • 空间复杂度必须是常量级别的。
  • 你可以假设这是个完全二叉树 (ie, 所有的叶子节点都在同一层,并且所有的父节点都有两个孩子节点).

例如,

给定下面的这个完全二叉树,

         1
/ \
2 3
/ \ / \
4 5 6 7

当调用完你的函数后,这个树应该是下面这样子的:

         1 -> NULL
/ \
2 -> 3 -> NULL
/ \ / \
4->5->6->7 -> NULL

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree

    struct TreeLinkNode {
TreeLinkNode *left;
TreeLinkNode *right;
TreeLinkNode *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Note:

  • You may only use constant extra space.
  • You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).

For example,
Given the following perfect binary tree,

         1
/ \
2 3
/ \ / \
4 5 6 7

After calling your function, the tree should look like:

         1 -> NULL
/ \
2 -> 3 -> NULL
/ \ / \
4->5->6->7 -> NULL
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTreeWithNext.h"

using namespace std;
/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
void connect(TreeLinkNode *root)
{
    if(root == NULL)
    {
        return ;
    }
    vector<TreeLinkNode *> vec;
    vec.push_back(root);
    int count = 1;
    while(!vec.empty())
    {
        if(count > 1)
        {
            vec[0]->next = vec[1];
        }
        else
        {
            vec[0]->next = NULL;
        }
        if(vec[0]->left != NULL)
        {
            vec.push_back(vec[0]->left);
        }
        if(vec[0]->right != NULL)
        {
            vec.push_back(vec[0]->right);
        }
        vec.erase(vec.begin());
        count--;

if(count == 0)
        {
            count = vec.size();
        }
    }
}

// 树中结点含有分叉,
//                  1
//              /       \
//             2         3
//           /   \      /  \
//          4     5    6    7
int main()
{
    TreeLinkNode *pNodeA1 = CreateBinaryTreeNode(1);
    TreeLinkNode *pNodeA2 = CreateBinaryTreeNode(2);
    TreeLinkNode *pNodeA3 = CreateBinaryTreeNode(3);
    TreeLinkNode *pNodeA4 = CreateBinaryTreeNode(4);
    TreeLinkNode *pNodeA5 = CreateBinaryTreeNode(5);
    TreeLinkNode *pNodeA6 = CreateBinaryTreeNode(6);
    TreeLinkNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA3, pNodeA6, pNodeA7);

connect(pNodeA1);

TreeLinkNode *trav = pNodeA1;
    TreeLinkNode *tmp;
    while (trav != NULL)
    {
        tmp = trav;
        while(tmp)
        {
            cout << tmp->val << " ";
            tmp = tmp->next;
        }
        cout << endl;
        trav = trav->left;
    }
    cout << endl;

DestroyTree(pNodeA1);
    return 0;
}

结果输出:
1
2 3
4 5 6 7
BinaryTreeWithNext.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 
#ifndef _BINARY_TREE_WITH_NEXT_H_
#define _BINARY_TREE_WITH_NEXT_H_

struct TreeLinkNode
{
    int val;
    TreeLinkNode *left;
    TreeLinkNode *right;
    TreeLinkNode *next;
    TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
};

TreeLinkNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeLinkNode *pParent,
                      TreeLinkNode *pLeft, TreeLinkNode *pRight);
void PrintTreeNode(TreeLinkNode *pNode);
void PrintTree(TreeLinkNode *pRoot);
void DestroyTree(TreeLinkNode *pRoot);

#endif /*_BINARY_TREE_WITH_NEXT_H_*/

BinaryTreeWithNext.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTreeWithNext.h"

using namespace std;

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
//创建结点
TreeLinkNode *CreateBinaryTreeNode(int value)
{
    TreeLinkNode *pNode = new TreeLinkNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeLinkNode *pParent, TreeLinkNode *pLeft, TreeLinkNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeLinkNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeLinkNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeLinkNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeLinkNode *pLeft = pRoot->left;
        TreeLinkNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

【二叉树的递归】06填充每个节点中的下一个正确的指针【Populating Next Right Pointers in Each Node】的更多相关文章

  1. 在每个节点填充向右的指针 Populating Next Right Pointers in Each Node

    2018-08-09 16:01:40 一.Populating Next Right Pointers in Each Node 问题描述: 问题求解: 由于是满二叉树,所以很好填充. public ...

  2. 【遍历二叉树】12往二叉树中添加层次链表的信息【Populating Next Right Pointers in Each Node II】

    本质上是二叉树的层次遍历,遍历层次的过程当中把next指针加上去. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...

  3. 【LeetCode】116. 填充每个节点的下一个右侧节点指针 Populating Next Right Pointers in Each Node 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcode ...

  4. [LeetCode 116 117] - 填充每一个节点的指向右边邻居的指针I & II (Populating Next Right Pointers in Each Node I & II)

    问题 给出如下结构的二叉树: struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *next; } ...

  5. [LeetCode] Populating Next Right Pointers in Each Node II 每个节点的右向指针之二

    Follow up for problem "Populating Next Right Pointers in Each Node". What if the given tre ...

  6. [LeetCode] Populating Next Right Pointers in Each Node 每个节点的右向指针

    Given a binary tree struct TreeLinkNode { TreeLinkNode *left; TreeLinkNode *right; TreeLinkNode *nex ...

  7. [LeetCode] 116. Populating Next Right Pointers in Each Node 每个节点的右向指针

    You are given a perfect binary tree where all leaves are on the same level, and every parent has two ...

  8. LeetCode OJ:Populating Next Right Pointers in Each Node II(指出每一个节点的下一个右侧节点II)

    Follow up for problem "Populating Next Right Pointers in Each Node". What if the given tre ...

  9. [LeetCode] 117. Populating Next Right Pointers in Each Node II 每个节点的右向指针 II

    Follow up for problem "Populating Next Right Pointers in Each Node". What if the given tre ...

随机推荐

  1. Python 自动化之验证码识别

    之前公司的验证码比较简单,可以采取直接破解的方式进行登录 部分代码如下: # -*- coding: utf-8 -*- from selenium import webdriver from sel ...

  2. python 基础 9.5 数据库连接池

      一. 数据库连接池    python 编程中可以使用MySQLdb 进行数据库的连接及诸如查询,插入,更新等操作,但是每次连接mysql 数据库请求时,都是独立的去请求访问,相当浪费资源,而且访 ...

  3. html5中form表单新增属性以及改良的input标签元素的种类

    在HTML5中,表单新增了一些属性,input标签也有了更多的type类型,有些实现了js才能实现的特效,但目前有些浏览器不能全部支持.下面是一些h5在表单和input标签上的一些改动. <!D ...

  4. Python 基本数据类型和序列类型

    python 3.6.4 中,有9种数据类型: int, float, bool, complex, list, tuple, string, set, dict (1).int 整型,不可变 (2) ...

  5. 第二课 创建http server

    nodejs 不需要单独安装服务器软件 tomcat .apache. iis 看下面的代码创建了http服务器,并输出一些简单的响应内容 //引入http 模块 var http = require ...

  6. 九度OJ 1354:和为S的连续正数序列 (整除)

    时间限制:2 秒 内存限制:32 兆 特殊判题:否 提交:2028 解决:630 题目描述: 小明很喜欢数学,有一天他在做数学作业时,要求计算出9~16的和,他马上就写出了正确答案是100.但是他并不 ...

  7. R语言做正态性检验

    摘自:吴喜之:<非参数统计>(第二版),中国统计出版社,2006年10月:P164-165 1.ks.test()    例如零假设为N(15,0.2),则ks.test(x," ...

  8. VS2015 下载 破解

    Visual Studio Professional 2015简体中文版(专业版): http://download.microsoft.com/download/B/8/9/B898E46E-CBA ...

  9. LeetCode:长度最小的子数组【209】

    LeetCode:长度最小的子数组[209] 题目描述 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的连续子数组.如果不存在符合条件的连续子数组,返回 ...

  10. ionic添加scss

    Setup Sass Automatically 在进行以下操作之前要确保node比较新,以便正确安装node-sass 或 改用cnpm install node-sass安装(淘宝源) $ ion ...