题意:

  给你一棵树,n个节点,每条边有长度。

  然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值。

题解:

  对于无根树上的dp,一般都是先转成以1为根的有根树,然后分别从上到下和从下到上两遍dp。

  另一个技巧是:处理重复走边的情况时,可以让dp值表示达到某种状态的方案数。

  表示状态:

    dp[i][j][k] = max dis

    表示从i节点出发,走的距离mod k = j时的方案数

  找出答案:

    对于每次询问(u,k),答案为:满足dp[u][d][k]>0的最大的d值。

  如何转移:

    第一遍dfs:

      dp[i][(j+len)%k][k] = ∑ dp[son][j][k]

      只考虑从上往下的路径。

    第二遍dfs:

      dp[i][(j+len)%k][k] += dp[par][j][k]

      dp[i][(j+len)%k][k] -= old[i][((j-len)%k+k)%k][k]

      其中old[i][j][k]代表原来的dp,即只考虑从上往下时的dp。

      减去old是因为要将会导致重复走边的方案删去。

  边界条件:

    dp[i][0][k] = 1

    others = 0

  复杂度:

    Tree dp: O(n*k*k)

    Query: O(q*k)

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <vector>
#define MAX_N 3005
#define MAX_K 105 using namespace std; struct Edge
{
int dst;
int len;
Edge(int _dst,int _len)
{
dst=_dst;
len=_len;
}
Edge(){}
}; int n,q;
int dp[MAX_N][MAX_K][MAX_K];
int old[MAX_N][MAX_K][MAX_K];
vector<Edge> edge[MAX_N]; void read()
{
cin>>n;
int x,y,z;
for(int i=;i<n;i++)
{
cin>>x>>y>>z;
edge[x].push_back(Edge(y,z));
edge[y].push_back(Edge(x,z));
}
} void dfs1(int now,int p)
{
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p) dfs1(temp.dst,now);
}
for(int k=;k<=;k++)
{
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p)
{
for(int j=;j<k;j++)
{
dp[now][(j+temp.len)%k][k]+=dp[temp.dst][j][k];
}
}
}
}
} void dfs2(int now,int p,int l)
{
if(p!=-)
{
for(int k=;k<=;k++)
{
for(int j=;j<k;j++)
{
old[now][j][k]=dp[now][j][k];
}
}
for(int k=;k<=;k++)
{
for(int j=;j<k;j++)
{
dp[now][(j+l)%k][k]+=dp[p][j][k];
dp[now][(j+l)%k][k]-=old[now][((j-l)%k+k)%k][k];
}
}
}
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p) dfs2(temp.dst,now,temp.len);
}
} void work()
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
for(int k=;k<=;k++)
{
dp[i][][k]=;
}
}
dfs1(,-);
dfs2(,-,);
cin>>q;
int u,k;
while(q--)
{
cin>>u>>k;
for(int d=k-;d>=;d--)
{
if(dp[u][d][k])
{
cout<<d<<endl;
break;
}
}
}
} int main()
{
read();
work();
}

TYOI Day1 travel:Tree dp【处理重复走边】的更多相关文章

  1. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. HDU 4359 Easy Tree DP?

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. poj 3230 Travel(dp)

    Description One traveler travels among cities. He has to pay for this while he can get some incomes. ...

  5. Codeforces 442D Adam and Tree dp (看题解)

    Adam and Tree 感觉非常巧妙的一题.. 如果对于一个已经建立完成的树, 那么我们可以用dp[ i ]表示染完 i 这棵子树, 并给从fa[ i ] -> i的条边也染色的最少颜色数. ...

  6. HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)

    Tree chain problem Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. HDU3534(SummerTrainingDay13-C tree dp)

    Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)

    题目链接 BZOJ 洛谷 先求最短路树.考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离 ...

  9. Partial Tree(DP)

    Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...

随机推荐

  1. Quartz.Net - Lesson2: 任务和触发器

    Lesson 2: 任务和触发器 本系列文章是官方3.x文档的翻译,原文地址:https://www.quartz-scheduler.net/documentation/quartz-3.x/tut ...

  2. 在Ubuntu下利用Eclipse开发FFmpeg配置小结

    首先需要编译FFmpeg得到头文件和lib文件,参见:在Ubuntu下编译FFmpeg 选择File-New-C Project 选择Executable下的Empty Project,右侧选择Lin ...

  3. android 学习mvc 和 mvp 和 mvvm参考项目

    githup地址:https://github.com/ivacf/archi 阿尔奇 此存储库展示并比较可用于构建Android应用程序的不同架构模式.完全相同的示例应用程序使用以下方法构建三次: ...

  4. parse arguments in bash

    There are lots of ways to parse arguments in sh. Getopt is good. Here's a simple script that parses ...

  5. html5小趣味知识点系列(一)spellcheck

    发现一些h5的系ode知识点增加一些趣味性 实用性 不敢妄自评论  觉得有用就用一下  没用就路过一下 spellcheck属性 它的功能是针对用户输入的文本内容进行拼写和语法检查 用于input 和 ...

  6. 微信小程序的官方文档

    虽然不知道微信小程序今后的发展情况,不过做为一名it人员的我还是去了解它. 这是他的文档路径,里面有详细的使用和申请内测号的全部流程,这里就不再过多解释了. 看后那个开发小程序的文档记得分析你感觉微信 ...

  7. 7月份计划-----dream

    梦想还是要有的,万一实现了呢? 数学 150[total] 专业课 150[total] 英语 100[total] 政治 100[total] 第一轮复习计划开始执行 1.专业课: 通过课件把所有的 ...

  8. Configure the modules to be find by modprobe

    sudo ln -s /path/to/module.ko /lib/modules/`uname -r` sudo depmod -a #depmod will output a dependenc ...

  9. poj1061(extendgcd)

    看完题目后,题目要求: 设时间为t (x+mt)%L = (y+nt)%L ( x-y + (m-n)*t )= k*L (k是整数,可为负) 然后就是经典的 xa+yb=c 求解x,y的经典题目了. ...

  10. eclipse tasks

    tasks可以在代码里增加标识,通过tasks view可以快速的找到这些标识的地方,有助于提高开发效率和代码管理. 通过Eclipse的 Window==>Show View==>Tas ...