TYOI Day1 travel:Tree dp【处理重复走边】
题意:
给你一棵树,n个节点,每条边有长度。
然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值。
题解:
对于无根树上的dp,一般都是先转成以1为根的有根树,然后分别从上到下和从下到上两遍dp。
另一个技巧是:处理重复走边的情况时,可以让dp值表示达到某种状态的方案数。
表示状态:
dp[i][j][k] = max dis
表示从i节点出发,走的距离mod k = j时的方案数
找出答案:
对于每次询问(u,k),答案为:满足dp[u][d][k]>0的最大的d值。
如何转移:
第一遍dfs:
dp[i][(j+len)%k][k] = ∑ dp[son][j][k]
只考虑从上往下的路径。
第二遍dfs:
dp[i][(j+len)%k][k] += dp[par][j][k]
dp[i][(j+len)%k][k] -= old[i][((j-len)%k+k)%k][k]
其中old[i][j][k]代表原来的dp,即只考虑从上往下时的dp。
减去old是因为要将会导致重复走边的方案删去。
边界条件:
dp[i][0][k] = 1
others = 0
复杂度:
Tree dp: O(n*k*k)
Query: O(q*k)
AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <vector>
#define MAX_N 3005
#define MAX_K 105 using namespace std; struct Edge
{
int dst;
int len;
Edge(int _dst,int _len)
{
dst=_dst;
len=_len;
}
Edge(){}
}; int n,q;
int dp[MAX_N][MAX_K][MAX_K];
int old[MAX_N][MAX_K][MAX_K];
vector<Edge> edge[MAX_N]; void read()
{
cin>>n;
int x,y,z;
for(int i=;i<n;i++)
{
cin>>x>>y>>z;
edge[x].push_back(Edge(y,z));
edge[y].push_back(Edge(x,z));
}
} void dfs1(int now,int p)
{
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p) dfs1(temp.dst,now);
}
for(int k=;k<=;k++)
{
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p)
{
for(int j=;j<k;j++)
{
dp[now][(j+temp.len)%k][k]+=dp[temp.dst][j][k];
}
}
}
}
} void dfs2(int now,int p,int l)
{
if(p!=-)
{
for(int k=;k<=;k++)
{
for(int j=;j<k;j++)
{
old[now][j][k]=dp[now][j][k];
}
}
for(int k=;k<=;k++)
{
for(int j=;j<k;j++)
{
dp[now][(j+l)%k][k]+=dp[p][j][k];
dp[now][(j+l)%k][k]-=old[now][((j-l)%k+k)%k][k];
}
}
}
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p) dfs2(temp.dst,now,temp.len);
}
} void work()
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
for(int k=;k<=;k++)
{
dp[i][][k]=;
}
}
dfs1(,-);
dfs2(,-,);
cin>>q;
int u,k;
while(q--)
{
cin>>u>>k;
for(int d=k-;d>=;d--)
{
if(dp[u][d][k])
{
cout<<d<<endl;
break;
}
}
}
} int main()
{
read();
work();
}
TYOI Day1 travel:Tree dp【处理重复走边】的更多相关文章
- 96. Unique Binary Search Trees (Tree; DP)
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- HDU 4359——Easy Tree DP?——————【dp+组合计数】
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- HDU 4359 Easy Tree DP?
Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- poj 3230 Travel(dp)
Description One traveler travels among cities. He has to pay for this while he can get some incomes. ...
- Codeforces 442D Adam and Tree dp (看题解)
Adam and Tree 感觉非常巧妙的一题.. 如果对于一个已经建立完成的树, 那么我们可以用dp[ i ]表示染完 i 这棵子树, 并给从fa[ i ] -> i的条边也染色的最少颜色数. ...
- HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)
Tree chain problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU3534(SummerTrainingDay13-C tree dp)
Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)
题目链接 BZOJ 洛谷 先求最短路树.考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离 ...
- Partial Tree(DP)
Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...
随机推荐
- python中常用的base64 md5 aes des crc32等的加密解密
1.base64 Python内置的base64模块可以实现base64.base32.base16.base85.urlsafe_base64的编码解码,python 3.x通常输入输出都是二进制形 ...
- iOS开发之 AES+Base64数据混合加密与解密
2016-04-08 09:03 编辑: liubinqww 分类:iOS开发 来源:liubinqww 投稿 4 889 "APP的数据安全已经牵动着我们开发者的心,简单的MD5/ ...
- 【JavaEE】Springmvc+Spring整合及example
这一篇在前一篇Springmvc的基础上,加上Spring.Spring的主要用途叫做控制反转(依赖注入,IoC/DI)和面向切面的编程(AOP),本文只介绍IoC,因为AOP主要的应用场景是记录日志 ...
- PHP-Manual的学习----【语言参考】----【类型】-----【array数组】
1.Array 数组 PHP 中的 数组 实际上是一个有序映射.映射是一种把 values 关联到 keys 的类型.此类型在很多方面做了优化,因此可以把它当成真正的数组,或列表(向量),散列表(是 ...
- Lumen开发:如何向 IoC 容器中添加自己定义的类
版权声明:本文为博主原创文章,未经博主允许不得转载. 先在起始文件bootstrap/app.php加上$app->register(App\Providers\User\UserService ...
- window下python安装pip
python3.5 1.cmd下运行python -m pip install -U pip 2.Path添加python安装目录下的\Scripts,有pip.exe文件 3.重新打开cmd ...
- 九度OJ 1262:Sequence Construction puzzles(I)_构造全递增序列 (DP)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:118 解决:54 题目描述: 给定一个整数序列,请问如何去掉最少的元素使得原序列变成一个全递增的序列. 输入: 输入的第一行包括一个整数N( ...
- Zabbix-Agent 客户端安装配置
1.安装Zabbix官方的yum源 [root@crazy-acong ~]# rpm -ivh http://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/zab ...
- BZOJXXXX: [IOI2000]邮局——四边形不等式优化初探
貌似$BZOJ$上并没有这个题... 是嫌这个题水了么... 还是要氪金权限号??? 这里附上洛谷的题面:洛谷P4767 [IOI2000]邮局 题目描述 高速公路旁边有一些村庄.高速公路表示为整数轴 ...
- PAT 1051. 复数乘法 (15)
复数可以写成(A + Bi)的常规形式,其中A是实部,B是虚部,i是虚数单位,满足i2 = -1:也可以写成极坐标下的指数形式(R*e(Pi)),其中R是复数模,P是辐角,i是虚数单位,其等价于三角形 ...