【bzoj5015】[Snoi2017]礼物 矩阵乘法
题目描述
热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1~N,每个到来的朋友都会带给他一些礼物:。其中,第一个朋友会带给他 1 个,之后,每一个朋友到来以后,都会带给他之前所有人带来的礼物个数再加他的编号的 K 次方那么多个。所以,假设 K=2,前几位朋友带来的礼物个数分别是:1,5,15,37,83假设 K=3,前几位朋友带来的礼物个数分别是:1,9,37,111现在,好奇自己到底能收到第 N 个朋友多少礼物,因此拜托于你了。已知 N,K请输出第 N 个朋友送的礼物个数 mod1000000007。
输入
输出
样例输入
4 2
样例输出
37
题解
矩阵乘法
设前$i$项的和为$S_i$,那么根据定义有$a_n=S_{n-1}+n^k$,故有$S_n=S_{n-1}+a_n=2S_{n-1}+n^k$。
由于k不大,显然这个式子可以矩乘。
具体方法:维护矩阵$\begin{bmatrix}S_{n-1}&n^k&n^{k-1}&...&n^1&n^0\end{bmatrix}$,那么$S$的转移矩阵就是上面的式子,而$n^i$的转移矩阵就是二项式系数,即$(n+1)^i$的展开式。
于是矩阵乘法加速递推,最终的答案就是$S_n-S_{n-1}$。
时间复杂度$O(k^3\log n)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
int d;
struct data
{
ll v[12][12];
ll* operator[](int a) {return v[a];}
data() {memset(v , 0 , sizeof(v));}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i <= d + 1 ; i ++ )
for(j = 0 ; j <= d + 1 ; j ++ )
for(k = 0 ; k <= d + 1 ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
return ans;
}
}A , P;
data pow(data x , ll y)
{
data ans;
int i;
for(i = 0 ; i <= d + 1 ; i ++ ) ans[i][i] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
int main()
{
ll n;
int i , j;
scanf("%lld%d" , &n , &d);
for(i = 1 ; i <= d + 1 ; i ++ ) A[0][i] = 1;
P[0][0] = 2 , P[1][0] = 1;
for(i = d + 1 ; i ; i -- )
{
P[d + 1][i] = 1;
for(j = d ; j >= i ; j -- ) P[j][i] = P[j + 1][i + 1] + P[j][i + 1];
}
A = A * pow(P , n - 1);
printf("%lld\n" , ((A * P)[0][0] - A[0][0] + mod) % mod);
return 0;
}
【bzoj5015】[Snoi2017]礼物 矩阵乘法的更多相关文章
- bzoj 5015 [Snoi2017]礼物 矩阵乘法
5015: [Snoi2017]礼物 Time Limit: 15 Sec Memory Limit: 512 MBSubmit: 163 Solved: 115[Submit][Status][ ...
- bzoj5015 [Snoi2017]礼物 矩阵快速幂+二项式展开
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5015 题解 设 \(f_i\) 表示第 \(i\) 个朋友的礼物,\(s_i\) 表示从 \( ...
- [bzoj5015][Snoi2017]礼物
来自FallDream的博客,未经允许,请勿转载,谢谢. 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第一个朋友会带给他 1 个,之后,每一个朋 ...
- BZOJ_5015_[Snoi2017]礼物_矩阵乘法
BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...
- SNOI2017 礼物
题解 设前\(n\)个人的礼物个数和为\(F_n\), 那么显然\[F_n = 2 \times F_{n-1} + i^k\] 考虑矩阵快速幂 棘手的问题是:\(i^k\)不是可以直接用矩阵乘法可以 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
随机推荐
- orale 10g和11g中的自动统计任务
orale 10g和11g中的自动统计任务 博客分类: 数据库相关/oracle 1) 先来看下oracle 10g中的自动统计任务的问题. 从Oracle Database 10g开始,Or ...
- ethereum(以太坊)(六)--整型(int)
pragma solidity ^0.4.20; /* uint8 uint16 ...uint256 int8 int16 int24 ..int256 uint => uint256 int ...
- JDK5 新特性
JDK5新特性目录导航: 自动拆装箱 Foreach 静态导入 可变参数 Var args 枚举 格式化输出 泛型 ProcessBuilder 内省 线程并发库(JUC) 监控和管理虚拟机 元数据 ...
- Python__for循环和列表生成式的区别
话不多,上例子 >>> L = [,,] >>> for i in range(len(L)): L[i] = L[i] + L[i-] print(L) #结果 ...
- 申请qq第三方登录 http://www.php20.com/forum.php?mod=viewthread&tid=29 (出处: 码农之家)
百度 qq互联 进入网站 按图中的步骤申请第三方登录即可 先申请成为开发者 审核通过后再继续操作 提交 后列表中会出现提交的申请. 状态为审核中,审核通过会得到下图. 点查看 红线后面就是appi ...
- Ubuntu 14.10 配置JDK + J2EE
本文仅作为本人在Ubuntu 14.10下安装JDK + J2EE的一个记录: 安装JDK 从Oracle的官网下载jdk-7u75-linux-x64.tar.gz 将jdk-7u75-linux- ...
- JVM——九大工具助你玩转Java性能优化
本文转载自 http://www.importnew.com/12324.html 本文由 ImportNew - 陈 晓舜 翻译自 idrsolutions.欢迎加入翻译小组.转载请参见文章末尾的要 ...
- 11,nginx入门与实战
网站服务 想必我们大多数人都是通过访问网站而开始接触互联网的吧.我们平时访问的网站服务 就是 Web 网络服务,一般是指允许用户通过浏览器访问到互联网中各种资源的服务. Web 网络服务是一种被动 ...
- 深入理解Angular2变化监测和ngZone
转载自GitHub JTangming : https://github.com/JTangming/tm/issues/4 Angular应用程序通过组件实例和模板之间进行数据交互,也就是将组件的数 ...
- android studio 首字母提示 设置 大小写敏感
在使用Android studo 编写程序时, 刚开始,关键字提示 首字母 设置了 大小写敏感,小写字母只能提示小写字母开头的,大写字母只能提示大写字母开始的,比较麻烦,在网上搜了下,解决办法如下: ...