题目描述

给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问点a的颜色

输入

第一行一个数T,表示数据组数
接下来每组数据的第一行三个数n,c,q表示结点个数,颜色数和操作数
接下来一行n-1个数描述2..n的父节点
接下来q行每行三个数a,l,c
若c为0,表示询问a的颜色
否则将距离a不超过l的a的子节点染成c

输出

设当前是第i个操作,y_i为本次询问的答案(若本次操作是一个修改则y_i为0),令z_i=i*y_i,请输出z_1+z_2+...+z_q模10^9+7

样例输入

1
4 3 7
1 2 2
3 0 0
2 1 3
3 0 0
1 0 2
2 0 0
4 1 1
4 0 0

样例输出

32


题解

KD-tree

“子树内”是dfs序限制,“距离不超过l”是深度限制。对满足两种限制的点的修改,可以将其看作平面上的点,修改相当于矩形修改,使用lazy标记+pushdown即可。

时间复杂度$O(n\sqrt n)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int head[N] , to[N] , next[N] , cnt , deep[N] , pos[N] , last[N] , tot , d , root;
struct data
{
int p[2] , mx[2] , mn[2] , c[2] , w , tag;
bool operator<(const data &a)const {return p[d] == a.p[d] ? p[d ^ 1] < a.p[d ^ 1] : p[d] < a.p[d];}
}a[N];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
pos[x] = ++tot , a[x].p[0] = pos[x] , a[x].p[1] = deep[x];
for(i = head[x] ; i ; i = next[i])
deep[to[i]] = deep[x] + 1 , dfs(to[i]);
last[x] = tot;
}
inline void pushup(int x)
{
int l = a[x].c[0] , r = a[x].c[1];
a[x].mx[0] = max(a[x].p[0] , max(a[l].mx[0] , a[r].mx[0]));
a[x].mx[1] = max(a[x].p[1] , max(a[l].mx[1] , a[r].mx[1]));
a[x].mn[0] = min(a[x].p[0] , min(a[l].mn[0] , a[r].mn[0]));
a[x].mn[1] = min(a[x].p[1] , min(a[l].mn[1] , a[r].mn[1]));
}
int build(int l , int r , int now)
{
if(l > r) return 0;
int mid = (l + r) >> 1;
d = now , nth_element(a + l , a + mid , a + r + 1);
a[mid].w = 1 , a[mid].tag = 0;
a[mid].c[0] = build(l , mid - 1 , now ^ 1);
a[mid].c[1] = build(mid + 1 , r , now ^ 1);
pushup(mid);
return mid;
}
inline void pushdown(int x)
{
if(a[x].tag)
{
int l = a[x].c[0] , r = a[x].c[1];
a[l].w = a[l].tag = a[r].w = a[r].tag = a[x].tag;
a[x].tag = 0;
}
}
void update(int bx , int ex , int by , int ey , int v , int x)
{
if(!x || a[x].mx[0] < bx || a[x].mn[0] > ex || a[x].mx[1] < by || a[x].mn[1] > ey) return;
if(a[x].mn[0] >= bx && a[x].mx[0] <= ex && a[x].mn[1] >= by && a[x].mx[1] <= ey)
{
a[x].w = a[x].tag = v;
return;
}
pushdown(x);
if(a[x].p[0] >= bx && a[x].p[0] <= ex && a[x].p[1] >= by && a[x].p[1] <= ey) a[x].w = v;
update(bx , ex , by , ey , v , a[x].c[0]) , update(bx , ex , by , ey , v , a[x].c[1]);
}
int query(int px , int py , int x)
{
d ^= 1;
if(a[x].p[0] == px && a[x].p[1] == py) return a[x].w;
pushdown(x);
if(d)
{
if(py < a[x].p[1] || (py == a[x].p[1] && px < a[x].p[0])) return query(px , py , a[x].c[0]);
else return query(px , py , a[x].c[1]);
}
else
{
if(px < a[x].p[0] || (px == a[x].p[0] && py < a[x].p[1])) return query(px , py , a[x].c[0]);
else return query(px , py , a[x].c[1]);
}
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(head , 0 , sizeof(head)) , cnt = 1;
a[0].mx[0] = a[0].mx[1] = -1 << 30 , a[0].mn[0] = a[0].mn[1] = 1 << 30;
int n , m , i , x , y , z , ans = 0;
scanf("%d%*d%d" , &n , &m);
for(i = 2 ; i <= n ; i ++ ) scanf("%d" , &x) , add(x , i);
dfs(1);
root = build(1 , n , 0);
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d" , &x , &y , &z);
if(z) update(pos[x] , last[x] , deep[x] , deep[x] + y , z , root);
else d = 1 , ans = (ans + (long long)query(pos[x] , deep[x] , root) * i) % 1000000007;
}
printf("%d\n" , ans);
}
return 0;
}

【bzoj4154】[Ipsc2015]Generating Synergy KD-tree的更多相关文章

  1. 【BZOJ4154】[Ipsc2015]Generating Synergy KDtree

    [BZOJ4154][Ipsc2015]Generating Synergy Description 给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问 ...

  2. BZOJ4154:[Ipsc2015]Generating Synergy(K-D Tree)

    Description 给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问点a的颜色 Input 第一行一个数T,表示数据组数 接下来每组数据的第一行三 ...

  3. BZOJ4154:[IPSC2015]Generating Synergy

    浅谈\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html 题目传送门:https://lydsy.com/JudgeOnline ...

  4. 【bzoj 4154】[Ipsc2015]Generating Synergy

    题目 大概已经掌握熟练码出\(kdt\)的技能了 发现距离子树根节点\(x\)不超过\(l\)的点可以用两种方式来限制,首先\(dfs\)序在\([dfn_x,dfn_x+sum_x)\)中,深度自然 ...

  5. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  6. 【BZOJ2843】极地旅行社(Link-Cut Tree)

    [BZOJ2843]极地旅行社(Link-Cut Tree) 题面 BZOJ 题解 \(LCT\)模板题呀 没什么好说的了.. #include<iostream> #include< ...

  7. 【BZOJ4530】大融合(Link-Cut Tree)

    [BZOJ4530]大融合(Link-Cut Tree) 题面 讨厌权限题!!! Loj链接 题目描述 小强要在 N个孤立的星球上建立起一套通信系统.这套通信系统就是连接 N个点的一个树.这个树的边是 ...

  8. 【BZOJ1969】航线规划(Link-Cut Tree)

    [BZOJ1969]航线规划(Link-Cut Tree) 题面 BZOJ 题解 删边操作 套路呀 离线读入倒过来做 变成加边操作 现在考虑怎么确定两点直接的关键路径条数 如果是一棵树,那么每条边都是 ...

  9. 【BZOJ4825】【HNOI2017】单旋(Link-Cut Tree)

    [BZOJ4825][HNOI2017]单旋(Link-Cut Tree) 题面 题面太长,懒得粘过来 题解 既然题目让你写Spaly 那就肯定不是正解 这道题目,让你求的是最大/最小值的深度 如果有 ...

随机推荐

  1. map集合修改其中元素 去除Map集合中所有具有相同值的元素 Properties长久保存的流操作 两种用map记录单词或字母个数的方法

    package com.swift.lianxi; import java.util.HashMap; import java.util.Iterator; import java.util.Map; ...

  2. 重新认识下数组的concat方法

    最近在学习react,看官方文档的时候,有一个例子中的一句话让我困惑.就是讲todoList的例子 concat不是连接数组的吗?看了一下concat的介绍 数组虽然是对象类型,但是对象毕竟不是数组啊 ...

  3. 关于Pycharm基本操作笔记

    创建 project(工程,译音:破拽科特) 1.Create New project(创建一个新的工程,译音:科瑞特 纽 破摘科特) 2.pure python(纯派森,译音:皮忧儿 派森) 3.l ...

  4. 【c学习-4】

    //递归函数,调用自身 #include<stdio.h> int fibFunc(int n) { || n==){ ; }else{ )+fibFunc(n-); } } int ma ...

  5. 【转载】VS2015 + EF6连接MYSQL5.6

    引用文章:https://jingyan.baidu.com/article/ce09321b9cc43f2bff858fbf.html 安装包注意点说明: 1.程序名称:mysql-for-visu ...

  6. 解决.NET Core R1中文乱码问题

    今天写了一个简单的.NET Core RC1控制台程序,发现中文显示一直是乱码.查看操作系统设置,没有问题:查看源文件编码,也没有问题:甚至查看了Console字符编码相关的注册表,依然没有发现问题. ...

  7. 学习python第十五天,面向对象

    Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的. 面向对象技术简介 类(Class): 用来描述具有相同的属性和方法的对象的集合.它定义了该集 ...

  8. Python 编码格式的使用

    编码史 ASCII > Unicode > UTF-8 Unicode支持多语言,UTF-8自动转换长短细节节省空间 在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传 ...

  9. Android webview 加载https网页显示空白

    http://www.2cto.com/kf/201110/108836.html 这个网址讲的不错. 设置webview支持https的方法: webView.setWebViewClient(ne ...

  10. loj2174 「FJOI2016」神秘数

    先考虑一下一个集合怎么用 \(O(n)\) 时间求出来,然后用主席树推广到一个序列就可以了.大致思想就是考虑一个数的权值和它前面的数的和的关系. #include <algorithm> ...