[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9
(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.
(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)
Solution.
(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$
(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- EXTJS 资料 Ext.Ajax.request 获取返回数据
下面是一个登陆页面调用的EXTJS login function,通过 url: '/UI/HttpHandlerData/Login/Login.ashx',获取返回登陆账户和密码! Ext.onR ...
- EXTJS 4.2 资料 控件之Grid 列鼠标悬停提示
columns: [ { header: }, { header: }, { header: , renderer: function (v, ctx, record) { ctx.tdAttr = ...
- SwfUpload vs里运行可以上传文件,放到iis上上传就报404错误。
网上的答案都是说swfupload 的upload_url 路径要设置成绝对路径,但是我也设置了,但是还是不行,然后又找了方法,终于找到了,点击这里查看 解决办法: <system.webSer ...
- ExtJs 4.2.1 报错:Uncaught TypeError: Cannot call method 'getItems' of null
做项目的时候遇到这个问题,搞了一上午终于解决了,让我们看看是什么问题: buttons: [ { text: '保存', icon: '../../../Images/extjs/disk.png', ...
- Java连接redis的使用示例
在多线程下使用Jedis 在不同的线程中使用相同的Jedis实例会发生奇怪的错误.但是创建太多的实现也不好因为这意味着会建立很多sokcet连接,也会导致奇怪的错误发生.单一Jedis实例不是线程安全 ...
- centos7 下载eclipse的镜像站点
这里吐槽一下,由于两天前centos被我农崩溃了(系统更新的锅),所以所有的开发环境又得重来一次. 其实,之前去eclipse的官网下载就很慢,打开官网也很慢,然后你会发现下下来的安装程序(只有40多 ...
- [百度]数组A中任意两个相邻元素大小相差1,在其中查找某个数
一.问题来源及描述 今天看了July的微博,发现了七月问题,有这个题,挺有意思的. 数组A中任意两个相邻元素大小相差1,现给定这样的数组A和目标整数t,找出t在数组A中的位置.如数组:[1,2,3,4 ...
- myeclipse报错:Could not create the view: An unexpected exception was thrown.
打开server窗口,发现显示:Could not create the view: An unexpected exception was thrown. 此处解决方法: 关闭myeclipse 删 ...
- 优化SQL Server数据库查询方法
SQL Server数据库查询速度慢的原因有很多,常见的有以下几种: 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列 ...
- Form表单学习网站
HTML表单 -- form标签 -- 与浏览者交互:http://www.dreamdu.com/xhtml/tag_form/