[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9
(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.
(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)
Solution.
(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$
(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 【js】IE、FF、Chrome浏览器中的JS差异介绍
如何判断浏览器类型 转:http://www.cnblogs.com/carekee/articles/1854674.html 1.通过浏览器特有的对象 如ie 的ActiveXObject ff ...
- ViewData,ViewBag和TempData
ViewData ViewBag TempData 类型 字典 Dynamic TempDataDictionary 出生时间 MVC1 MVC3 框架版本 .net3.5 .net4.0 ...
- SVN 提交必填备注Commit
操作方法:在SVN的Repositories下,找到要配置的项目,在项目目录下找到hooks文件夹,在其下创建pre-commit.bat文件,把下面复制进去就可以了(无需重启,如果改动,保存bat文 ...
- xcode7 app loader error itms 90168
. $ cd ~/.itmstransporter . $ rm update_check* . $ mv softwaresupport softwaresupport.bak . $ ...
- python 中的列表解析和生成表达式 - 转
优雅.清晰和务实都是python的核心价值观,如果想通过操作和处理一个序列(或其他的可迭代对象)来创建一个新的列表时可以使用列表解析( List comprehensions)和生成表达式,通过这两 ...
- Creating a new Signiant Transfer Engine because the previous transfer had to be canceled.
From: http://stackoverflow.com/questions/10548196/application-loader-new-weird-warning-about-signian ...
- FZU-1926+KMP
题意:给定一篇文章和一些句子.询问句子是否在文章中出现. kmp模板题 /* kmp */ #include<stdio.h> #include<string.h> #incl ...
- HDU4628+状态压缩DP
/* 状态压缩DP dp[ i ]:达到i状态的最小step. 题意:每次可以去掉一个回文串,求最少几步能取完. */ #include<stdio.h> #include<stri ...
- android 图片画画板
canvas.xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns: ...
- [java线段树]2015上海邀请赛 D Doom
题意:n个数 m个询问 每个询问[l, r]的和, 再把[l, r]之间所有的数变为平方(模为9223372034707292160LL) 很明显的线段树 看到这个模(LLONG_MAX为922337 ...