(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.

(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)

Solution.

(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$

(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Delphi XE5 android toast

    unit Android.JNI.Toast; // Java bridge class imported by hand by Brian Long (http://blong.com) inter ...

  2. springMVC从上传的Excel文件中读取数据

    示例:导入客户文件(Excle文件) 一.编辑customer.xlsx 二.在spring的xml文件设置上传文件大小 <!-- 上传文件拦截,设置最大上传文件大小 10M=10*1024*1 ...

  3. js原生代码编写一个鼠标在页面移动坐标的检测功能,兼容各大浏览器

    function mousePosition(e) {     //IE9以上的浏览器获取     if (e.pageX || e.pageY) {         return {         ...

  4. VB逆向

    大家或许有所察觉了,随着我们课程的不断深入学习,我们感觉自身逆向的“内功”也在不断的增进! 我们从爆破入手,到现在逐步大家进入程序的内部,认识不同编译器开发的程序,探索不同的加密逻辑. 前边,我们的例 ...

  5. P​H​P​ ​5​.​3​连​接​s​q​l​ ​s​e​r​v​e​r​ ​2​0​0​8​ ​R​2

    我的机器为: xp sp3 sql server 2008 developer apache 2.2.2 php 5.3  从5.3开始,php就不再提供mssql.dll了,所以要php连接sql  ...

  6. VIM的高级使用

    VIM的高级使用  转:http://www.cnblogs.com/itech/archive/2012/02/22/2363111.html 1)一些常用的Vim配置,在~/.vimrc中 syn ...

  7. NODE.JS的基本系统模块操作样例

    就练练手, 嘿嘿,说不定,写服务器脚本也可以哟. console.log('Currently executing file is ' + __filename); console.log('It i ...

  8. Android 调用系统的拍相程序进行录像

    xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android ...

  9. nginx静态资源分离部署

    修改nginx.conf文件,用于nginx处理静态资源. 主要配置如下(在server配置中加入location配置即可): server { listen 80; server_name 123. ...

  10. JS插件excanvas的使用方法

     这个还没有想好怎么写,等写好后再发布 试用了excanvas.js,生成静态统计图 IE下使用excanvas.js的注意事项