(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.

(2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $\lm_1,\cdots,\lm_k$ of a normal operator $A$, then $\sef{x,Ax}$ lies in the convex hull of $\lm_1,\cdots,\lm_k$. (This fact will be used frequently in Chapter III.)

Solution.

(1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$\bex A=U\diag(\lm_1,\cdots,\lm_n)U^*, \eex$$ and thus $$\beex \bea W(A)&=\sed{x^*Ax;\sen{x}=1}\\ &=\sed{x^*U\diag(\lm_1,\cdots,\lm_n)U^*x;\sen{x}=1}\\ &=\sed{\sum_{i=1}^n \lm_i|y_i|^2; \sum_{i=1}^n |y_i|^2=1,\ y=U^*x}\\ &=\co\sed{\lm_1,\cdots,\lm_n}. \eea \eeex$$

(2). Let $u_1,\cdots,u_k$ be the first $k$ column vector of $U$, then $$\bex Au_i=\lm_iu_i,\quad 1\leq i\leq k. \eex$$ If $$\bex x=\sum_{i=1}^k x_iu_i,\quad \sen{x}=1\ra \sum_{i=1}^k |x_i|^2=1, \eex$$ then $$\beex \bea \sef{x,Ax}&=\sef{\sum_{i=1}^k x_iu_i,A\sum_{j=1}^k x_ju_j}\\ &=\sef{\sum_{i=1}^k x_iu_i,\sum_{j=1}^k\lm_j x_ju_j}\\ &=\sum_{i=1}^k |x_i|^2\lm_i\\ &\in \co\sed{\lm_1,\cdots,\lm_k}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. To change the sharepoint CA port

    Set-SPCentralAdministration -Port <port number> to fix the error: Got this error: Failed to re ...

  2. C#中字符串驻留技术

    转自:http://www.cnblogs.com/Charles2008/archive/2009/04/12/1434115.html MSDN概念:公共语言运行库通过维护一个表来存放字符串,该表 ...

  3. HDFS入门详解

    一. 前提和设计目标 1. 硬件错误是常态,因此需要冗余,这是深入到HDFS骨头里面去了 HDFS可能由成百上千的服务器所构成,每个服务器上存储着文件系统的部分数据.我们面对的现实是构成系统的组件数目 ...

  4. [转载]MVC3缓存:使用页面缓存

    在以前的WebForm的开发中,在页面的头部加上OutputCache即可启用页面缓存,而在MVC3中,使用了Razor模板引擎的话,该如何使用页面缓存呢?如何启用 在MVC3中要如果要启用页面缓存, ...

  5. LA 4731

    dp[i][j]意思是前i个分成j组最小的花费 #include<cstdio> #include<algorithm> #include<cstring> #in ...

  6. 线程以及数据对象的wait()和notifyAll()方法

    正在运行的程序称作一个进程,一个进程可以包含多个线程,这些线程可以共享进程的资源,它们共用一块存储空间.那么,各个线程在访问同一个数据对象的同时,可能引起冲突,以生产者.消费者为例,就会出现队列中没有 ...

  7. POJ2031Building a Space Station

    http://poj.org/problem?id=2031 题意:你是空间站的一员,太空里有很多球形且体积不一的“小房间”,房间可能相距不近,也可能是接触或者甚至是重叠关系,所有的房间都必须相连,这 ...

  8. IText PdfPTable表格 单元的居中显示

    昨晚寻找了网上很多关于IText表格居中问题,他们其中的有些代码我即使复制上去生成的doc表格的文字都是不居中的,后来我自己找出了一种居中方式: 为PdfPCell对象添加paragraph对象,并将 ...

  9. 版本管理工具介绍—Git篇

    前篇 如题,提起版本管理工具相信做C#开发 还是对Git比较陌生  我们可能更熟悉vss.svn 记录此文的目的 更是为以后的前段学习做基础  现在的技术比如nodeJs  angularJs ==都 ...

  10. SPRING IN ACTION 第4版笔记-第九章Securing web applications-009-拦截请求()

    一. 对特定的请求拦截 For example, consider the requests served by the Spittr application. Certainly, thehome ...