【原】Storm 消息处理保障机制
Storm入门教程
1. Storm基础
Storm
Storm主要特点
Storm基本概念
Storm调度器
Storm配置
Guaranteeing Message Processing(消息处理保障机制)
消息的“完整性处理”
在消息得到完整性处理后或处理失败后会发生什么
Storm 的可靠性 API
在 tuple 可以被重新处理的前提下,如何使应用正确运行
Storm 是以怎样以高效的方式实现可靠性
调整可靠性
Daemon Fault Tolerance(守护线程容错机制)
理解Storm拓扑的并行
Tutorial
Local模式
在生产环境中运行Topologies
Guaranteeing Message Processing(消息处理保障机制)
Storm提供了不同等级的消息处理保障机制,包括尽最大努力交付、至少一次、Trident实现的恰好一次。
Storm 能够保证每一个由 Spout 发送的消息都能够得到完整地处理。本文详细解释了 Storm 如何实现这种保障机制,以及作为用户如何使用好 Storm 的可靠性机制。
消息的“完整性处理”
一个从 spout 中发送出的 tuple 会产生上千个基于它创建的 tuples。例如,有这样一个 word-count topology程序:
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("senten=ces", new KestrelSpout("kestrel.backtype.com",
22133,
"sentence_queue",
new StringScheme()));
builder.setBolt("split", new SplitSentence(), 10)
.shuffleGrouping("sentences");
builder.setBolt("count", new WordCount(), 20)
.fieldsGrouping("split", new Fields("word"));
这个topology从一个 Kestrel 队列中读取句子,然后将句子分解成若干个单词,然后将它每个单词和该单词的数量发送出去。这种情况下,从 spout 中发出的 tuple 就会产生很多基于它创建的新 tuple:包括句子中单词的 tuple 和 每个单词的个数的 tuple。这些消息构成了这样一棵树:
如果这棵 tuple 树发送完成,并且树中的每一条消息都得到了正确的处理,就表明发送 tuple 的 spout 已经得到了“完整性处理”。相应地,如果在指定的超时时间内 tuple 树中有消息没有完成处理就意味着这个 tuple 失败了。这个超时时间可以使用 Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS 参数进行配置,如果不配置,则默认时间为 30 s。
在消息得到完整性处理后或处理失败后会发生什么
为了理解这个问题,让我们先了解一下 tuple 的生命周期。下面是定义 spout 的接口(可以在 Javadoc 中查看更多细节信息):
public interface ISpout extends Serializable {
void open(Map conf, TopologyContext context, SpoutOutputCollector collector);
void close();
void nextTuple();
void ack(Object msgId);
void fail(Object msgId);}
首先,通过调用 Spout 的 nextTuple 方法,Storm 向 Spout 请求一个 tuple。Spout 会使用 open 方法中提供的SpoutOutputCollector 向它的一个输出数据流中发送一个 tuple。在发送 tuple 的时候,Spout 会提供一个 “消息 id”,这个 id 会在后续过程中用于识别 tuple。例如,上面的 KestrelSpout 就是从一个 kestrel 队列中读取一条消息,然后再发送一条带有“消息 id”的消息,这个 id 是由 Kestrel 提供的。使用 SpoutOutputCollector 发送消息一般是这样的形式:
_collector.emit(new Values("field1", "field2", 3) , msgId);
然后,tuple 会被发送到对应的 bolt 中去,在这个过程中,Storm 会很小心地跟踪创建的消息树。如果 Storm 检测到某个 tuple 被完整处理, Storm 会根据 Spout 提供的“消息 id”调用最初发送 tuple 的 Spout 任务的 ack 方法。对应的,Storm 在检测到 tuple 超时之后就会调用 fail 方法。注意,对于一个特定的 tuple,响应(ack)和失败处理(fail)都只会由最初创建这个 tuple 的任务执行。也就是说,即使 Spout 在集群中有很多个任务,某个特定的 tuple 也只会由创建它的那个任务——而不是其他的任务——来处理成功或失败的结果。
我们再以 KestrlSpout 为例来看看在消息的可靠性处理中 Spout 做了什么。在 KestrlSpout 从 Kestrel 队列中取出一条消息时,可以看作它“打开”了这条消息。也就是说,这条消息实际上并没有从队列中真正地取出来,而是保持着一个“挂起”状态,等待消息处理完成的信号。处于挂起状态的消息不会被发送到其他的消费者中。另外,如果消费者(客户端)断开了连接,所有处于挂起状态的消息都会重新放回到队列中。在消息“打开”的时候 Kestrel 会给客户端同时提供消息体数据和一个唯一的 id。KestrelSpout 会把tuple id当作“消息 id”然后将tuple发送给SpoutOutputCollector。一段时间之后,在 KestrelSpout 的 ack 或者 fail 方法被调用的时候,KestrelSpout 就会通过这个消息 id 向 Kestrel 请求将消息从队列中移除(对应 ack 的情况)或者将消息重新放回队列(对应 fail 的情况)。
Storm 的可靠性 API
使用 Storm 的可靠性机制时,你需要注意两件事:首先,在 tuple 树中创建新节点连接时务必通知 Storm;其次,在每个 tuple 处理结束时也必须向 Storm 发出通知。通过这两个保证,Storm 就能够检测到 tuple 树会在何时完成处理,并适时地调用 ack 或者 fail 方法。Storm 的 API 提供了一种非常精确的方式来完成这些任务。
Storm 中指定 tuple 树中的一个连接称为“锚定”(anchoring)。锚定是在发送新 tuple 的同时发生的。让我们以下面的 Bolt 为例说明这一点,这个 Bolt 将一个包含句子的 tuple 分割成若干个单词 tuple:
public class SplitSentence extends BaseRichBolt {
OutputCollector _collector;
public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
_collector = collector;
}
public void execute(Tuple tuple) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {
_collector.emit(tuple, new Values(word));
}
_collector.ack(tuple);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
通过将输入 tuple 指定为 emit 方法的第一个参数,每个单词 tuple 都被“锚定”了。这样,如果单词 tuple 在后续处理过程中失败了,作为这棵 tuple 树的根节点的原始 Spout tuple 就会被重新处理。相反,如果像下面发发送 tuple会发生什么呢:
_collector.emit(new Values(word));
这种方式称为“非锚定”。在这种情况下,下游的 tuple 处理失败不会触发原始 tuple 的重新执行。有时候发送这种“非锚定” tuple 也是必要的,这取决于你应用的容错性要求。
一个输出 tuple 可以被锚定到多个输入 tuple 上,这在流式连接或者聚合操作时很有用。显然,一个多锚定的 tuple 失败会导致 Spout 中多个 tuple 的重新处理。多锚定操作是通过特定tuple 列表而不是单一的 tuple 来实现的,如下面的例子所示:
List<Tuple> anchors = new ArrayList<Tuple>();
anchors.add(tuple1);
anchors.add(tuple2);
_collector.emit(anchors, new Values(1, 2, 3));
多锚定操作会把输出 tuple 添加到多个 tuple 树中。注意,多锚定也可能会打破树的结构从而创建一个 tuple 的有向无环图(DAG),如下图所示:
Storm 的程序实现既支持对树的处理,同样也支持对 DAG 的处理(由于早期的 Storm 版本仅仅对树有效,所以“tuple 树”的这个糟糕的概念就一直沿袭下来了)。
锚定其实可以看作是将 tuple 树具体化的过程 —— 对一棵 tuple 树中一个单独 tuple 的接触处理的时候,后续以及最终的 tuple 都会在 Storm 可靠性 API 的作用下得到标定。这是通过OutputCollector 的 ack 和 fail 方法实现的。如果你再回过头看一下 SplitSentence 的例子,你就会发现输入 tuple 是在所有的单词 tuple 发送出去之后被 ack 的。
你可以使用 OutputCollector 的 fail 方法来使得位于 tuple 树根节点的 Spout tuple 立即失败。例如,你的应用可以在建立数据库连接的时候抓取异常,并且在异常出现的时候立即让输入 tuple 失败。通过这种立即失败的方式,原始 Spout tuple 就会比等待 tuple 超时的方式响应更快。
每个待处理的 tuple 都必须应答(ack)或者失效(fail)。因为 Storm 是使用内存来跟踪每个 tuple 的,所以,如果你不对每个 tuple 进行应答或者失效,那么负责跟踪的任务很快就会发生内存溢出。
Bolt 处理 tuple 的一种通用模式是在 execute 方法中读取输入 tuple、发送出基于输入 tuple 的新 tuple,然后在方法末尾对 tuple 进行应答。大部分 Bolt 都会使用这样的过程。这些 Bolt 大多属于过滤器或者简单的处理函数一类。Storm 有一个可以简化这种操作的简便接口,称为 BasicBolt。例如,如果使用 BasicBolt,SplitSentence 的例子可以这样写:
public class SplitSentence extends BaseBasicBolt {
public void execute(Tuple tuple, BasicOutputCollector collector) {
String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {
collector.emit(new Values(word));
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
这个实现方式比之前的方式要简单许多,而且在语义上完全一致。发送到 BasicOutputCollector 的 tuple 会被自动锚定到输入 tuple 上,而且输入 tuple 会在 execute 方法结束的时候自动应答。
相对应,执行聚合或者联结操作的 Bolt 可能需要延迟应答 tuple直到一批 tuple 生成计算结果后。聚合和联结操作一般也会需要对他们的输出 tuple 进行多锚定。这个过程已经超出了 IBasicBolt 的应用范围。
在 tuple 可以被重新处理的前提下,如何使应用正确运行
按照软件设计的一般思路,这个问题的答案是“取决于实际情况”。如果你想要实现消息恰好消费一次,那么使用Trident。对于一些场景而言,数据丢失也是运行的,可以用配置项Config.TOPOLOGY_ACKERS设置acker bolts为0。在另一些场景中,需要消息至少处理一次且不允许丢失。
Storm 是以怎样以高效的方式实现可靠性
Storm 的拓扑有一些特殊的称为“acker”的任务,这些任务负责跟踪每个 Spout 发出的 tuple 组成的 DAG。当一个 acker 发现一个 DAG 结束了,它就会给创建 spout tuple 的 Spout 任务发送一条消息,这个任务创建一个对应的tuple来应答这个消息。你可以使用Config.TOPOLOGY_ACKERS 来配置拓扑的 acker 数量。Storm 默认会将 acker 的数量设置为每个worker上都有一个task。
理解 Storm 的可靠性实现的最好方式还是通过了解 tuple 和 tuple DAG 的生命周期。当一个 tuple 在拓扑中被创建出来的时候 —— 不管是在 Spout 中还是在 Bolt 中创建的 —— 这个 tuple 都会被配置一个随机的 64 位 id。acker 就是使用这些 id 来跟踪每个 spout tuple 的 tuple DAG 的。
Spout tuple 的 tuple 树中的每个 tuple 都知道 spout tuple 的 id。当你在 bolt 中发送一个新 tuple 的时候,输入 tuple 中的所有 spout tuple 的 id 都会被复制到新的 tuple 中。在 tuple 被 ack 的时候,它会通过回调函数向合适的 acker 发送一条消息,这条消息显示了 tuple 树中发生的变化。也就是说,它会告诉 acker 这样一条消息:“在这个 tuple 树中,我的处理已经结束了,接下来这个就是被我标记的新 tuple”。
以下图为例,如果 D tuple 和 E tuple 是由 C tuple 创建的,那么在 C 应答的时候 tuple 树就会发生变化:
由于在 D 和 E 添加到 tuple 树中的时候 C 已经从树中移除了,所以这个树并不会被过早地结束。
关于 Storm 如何跟踪 tuple 树还有更多的细节。正如上面所提到的,你可以随意设置拓扑中 acker 的数量。这就会引起下面的问题:当 tuple 在拓扑中被 ack 的时候,它是怎么知道向那个 acker 任务发送信息的?
对于这个问题,Storm 实际上是使用取模哈希算法来将 spout tuple 映射到 acker 任务上的。由于每个 tuple 都会包含原始的 spout tuple id,所以他们会知道需要与哪个 acker 任务通信。
关于 Storm 的另一个问题是 acker 是如何知道它所跟踪的 spout tuple 是由哪个 Spout 任务处理的。实际上,在 Spout 任务发送新 tuple 的时候,它也会给对应的 acker 发送一条消息,告诉 acker 这个 spout tuple 是与它的任务 id 相关联的。随后,在 acker 观察到 tuple 树结束处理的时候,它就会知道向哪个 Spout 任务发送结束消息。
Acker 实际上并不会直接跟踪 tuple 树。对于一棵包含数万个 tuple 节点的树,如果直接跟踪其中的每个 tuple,显然会很快把这个 acker 的内存撑爆。所以,这里 acker 使用一个特殊的策略来实现跟踪的功能,使用这个方法对于每个 spout tuple 只需要占用固定的内存空间(大约 20 字节)。这个跟踪算法是 Storm 运行的关键,也是 Storm 的一个突破性技术。
在 acker 任务中储存了一个map集合,用于将 spout tuple 的 id 和一组值相映射。其中第一个值是创建这个 tuple 的任务 id,这个 id 主要用于在后续操作中发送结束消息。第二个值是一个 64 比特的数字,称为“应答值”(ack val)。这个应答值是整个 tuple 树的一个完整的状态表述,而且它与树的大小无关。因为这个值仅仅是这棵树中所有被创建的或者被应答的 tuple 的 tuple id 进行异或运算的结果值。
当一个 acker 任务观察到“应答值”变为 0 的时候,它就知道这个 tuple 树已经完成处理了。因为 tuple id 实际上是随机生成的 64 比特数值,所以“应答值”碰巧为 0 是一种极小概率的事件。理论计算得以得出,在每秒应答一万次的情况下,需要 5000 万年才会发生一次错误。而且即使是这样,也仅仅会在 tuple 碰巧在拓扑中失败的时候才会发生数据丢失的情况。
假设你现在已经理解了这个可靠性算法,让我们再分析一下所有失败的情形,看看这些情形下 Storm 是如何避免数据丢失的:
由于任务(线程)挂掉导致 tuple 没有被应答(ack)的情况:这时位于 tuple 树根节点的 spout tuple 会在任务超时后得到重新处理。
Acker 任务挂掉的情形:这种情况下 acker 所跟踪的所有 spout tuple 都会由于超时被重新处理。
Spout 任务挂掉的情形:这种情况下 Spout 任务的来源就会负责重新处理消息。例如,对于像 Kestrel 和 RabbitMQ 这样的消息队列就会在客户端断开连接时将所有的挂起状态的消息放回队列。
综上所述,Storm 的可靠性机制是具备分布式的、可伸缩的、容错的特征。
调整可靠性
由于 acker 任务是轻量级的,在拓扑中你并不需要很多 acker 任务。你可以通过 Storm UI 监控他们的性能(acker 任务的 id 为“__acker”)。如果发现观察结果存在问题,你可能就需要增加更多的 acker 任务。
如果你不关注消息的可靠性 —— 也就是说你不关心在失败情形下发生的 tuple 丢失 —— 那么你就可以通过不跟踪 tuple 树的处理来提升拓扑的性能。正常情况下,由于 tuple 树中的每个 tuple 都会带有一个应答消息,不追踪 tuple 树会使得传输的消息的数量减半。另外,下游数据流中的 id 也会变少,这样可以降低网络带宽的消耗。
有三种方法可以移除 Storm 的可靠性机制。第一种方法是将 Config.TOPOLOGY_ACKERS 设置为0,在这种情况下,Storm 会在 Spout 发送 tuple 之后立即调用 ack 方法,tuple 树叶就不会被跟踪了。
第二种方法是基于消息本身移除可靠性。你可以通过在 SpoutOutputCollector.emit 方法中省略消息 id 来关闭 spout tuple 的跟踪功能。
第三种,如果你不关心拓扑中的下游 tuple 是否会失败,你可以在发送 tuple 的时候选择发送“非锚定”的(unanchored)tuple。由于这些 tuple 不会被标记到任何一个 spout tuple 中,显然在他们处理失败的时候不会引起任何 spout tuple 的重新处理。
【原】Storm 消息处理保障机制的更多相关文章
- Storm(三)Storm的原理机制
一.Storm的数据分发策略 1. Shuffle Grouping 随机分组,随机派发stream里面的tuple,保证每个bolt task接收到的tuple数目大致相同. 轮询,平均分配 2. ...
- Storm的ack机制在项目应用中的坑
正在学习storm的大兄弟们,我又来传道授业解惑了,是不是觉得自己会用ack了.好吧,那就让我开始啪啪打你们脸吧. 先说一下ACK机制: 为了保证数据能正确的被处理, 对于spout产生的每一个tup ...
- Storm消息容错机制(ack-fail机制)
storm消息容错机制(ack-fail) 1.介绍 在storm中,可靠的信息处理机制是从spout开始的. 一个提供了可靠的处理机制的spout需要记录他发射出去的tuple,当下游bolt处理t ...
- 理解storm的ACKER机制原理
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成 ...
- storm的并发机制
storm的并发机制 storm计算支持在多台机器上水平扩容,通过将计算切分为多个独立的tasks在集群上并发执行来实现. 一个task可以简单地理解:在集群某节点上运行的一个spout或者bolt实 ...
- EOCS 最低资源保障机制
本期小E将为大家带来EOCS 最低资源保障机制. 为满足普通用户日常的转账等基本需求,无需再为较少的初始资源抵押担心无法使用链上功能.EOCS可以通过链的参数来调整分配给每个用户免费的资源额度,相当于 ...
- Storm消息可靠机制
一:介绍 1.介绍 默认情况是,Spout每获取一条数据,封装后发送给后面的组件,不再管后面是否处理完成或成功接收,不再考虑. 这种的情况是不用太精确,没有启用可靠性消息机制. 2.方面的体现 spo ...
- storm的acker机制
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成功处理.如果 ...
- storm(二) 事务机制
前言 为了保证tuple的强有序和exactly-once语义,storm提供了事务机制,为每个tuple提供一个id 设计方法1 为每个tuple设置一个事务id,在数据库保存事务id和当前处理的i ...
随机推荐
- DevExpress GridControl 导出为Excel
private void btnExport_ItemClick(object sender, EventArgs e) { SaveFileDialog sa ...
- efficient c++,单线程内存池
基于 http://www.cnblogs.com/diegodu/p/4555018.html operator new的知识基础上 介绍这个章节的内容 对于一般直接 new 与delete 性能较 ...
- Hibernate4.1.4配置二级缓存EHCache步骤
1.当然首先引入EHCache相关的jar包 这些包不需要另外下载,在Hibernate官方网站下载Hibernate4.1.7的压缩包(如:hibernate-release-4.1.7.Final ...
- spoj 247
不管行列 总是先切割切割费用大的 代码比较烂 ...... #include <iostream> #include <cstdio> #include <cstr ...
- "Principles of Reactive Programming" 之<Actors are Distributed> (1)
week7中的前两节课的标题是”Actors are Distributed",讲了很多Akka Cluster的内容,同时也很难理解. Roland Kuhn并没有讲太多Akka Clus ...
- C++ static、const和static const 以及它们的初始化
转自C++ static.const和static const 以及它们的初始化 const定义的常量在超出其作用域之后其空间会被释放,而static定义的静态常量在函数执行后不会释放其存储空间. s ...
- IOS 录像软件
http://iphone.91.com/tutorial/cjjc/140430/21683219.html
- jmeter 测试java协议经验总结
对java协议的良好支持,是jmeter比loadrunner优秀的地方,但是坑也不少,本文将相关点都整理下来备忘 一. 依赖的jar包 使用IDE开发jemter java协议脚本时,需要导入以下几 ...
- eclipse连接远程Hadoop报错,Caused by: java.io.IOException: 远程主机强迫关闭了一个现有的连接。
eclipse连接远程Hadoop报错,Caused by: java.io.IOException: 远程主机强迫关闭了一个现有的连接.全部报错信息如下: Exception in thread & ...
- Hbase二级索引
http://blog.sina.com.cn/s/blog_4a1f59bf01018apd.html