Searching a 2D Sorted Matrix Part I
Write an efficient algorithm that searches for a value in an n x m table (two-dimensional array). This table is sorted along the rows and columns — that is,
Table[i][j] ≤ Table[i][j + 1],
Table[i][j] ≤ Table[i + 1][j]
Solution:
1. STEP 方法:
Start in the bottom-left corner of your matrix. Then go to the right until you find the exact number (done), or until you find a number that is bigger.
Then you go upwards in the matrix until you find the exact number (done), or until you find a number that is too small.
Then again you move to the right, ... and so on until you found the number or until you reach the right-side or top of your matrix.
The following images contain some examples, using an Excel table showing the target number in green, and the path that is followed in yellow.
In the last example we look for 207, which isn't in the matrix:
This is just the algorithm. The coding is left for you as an exercise :-)
EDIT: When starting on the bottom row, a binary search might give a better starting point. For the rest of the algorithm it probably doesn't matter.
Step-wise Linear Search:
We call this the Step-wise Linear Search method. Similar to Diagonal Binary Search, we begin with the upper right corner (or the bottom left corner). Instead of traversing diagonally each step, we traverse one step to the left or bottom. For example, the picture below shows the traversed path (the red line) when we search for 13.
Essentially, each step we are able to eliminate either a row or a column. The worst case scenario is where it ended up in the opposite corner of the matrix, which takes at most 2n steps. Therefore, this algorithm runs in O(n) time, which is better than previous approaches.
Below is the code and it is simple and straight to the point. You should not make any careless mistake during the interview.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
boolstepWise(intmat[][N_MAX],intN,inttarget,
int&row,int&col){
if(target<mat[0][0]||target>mat[N-1][N-1])returnfalse;
row=0;
col=N-1;
while(row<=N-1&&col>=0){
if(mat[row][col]<target)
row++;
elseif(mat[row][col]>target)
col--;
else
returntrue;
}
returnfalse;
}
|
This is probably the answer that most interviewers would be looking for. But we will not stop here. Let us continue exploring some more interesting solutions.
2. 分治。
Quad Partition:
Did you realize that this problem is actually solvable using a divide and conquer approach? I bet you did!
First, we make an observation that the center element always partition the matrix into four smaller matrices. For example, the center element 9 partitions the matrix into four matrices as shown in the picture below. Since the four smaller matrices are also sorted both row and column-wise, the problem can naturally be divided into four sub-problems.
If you notice carefully, we are always able to eliminate one of the four sub-problems in each step. Assume our target is21, which is greater than the center element 9. We can eliminate the upper left quadrant instantly, because all elements in that quadrant are always less than or equal to 9. Now assume our target is 6, which is less than 9.
Similarly, we eliminate the bottom right quadrant from consideration, because elements in that quadrant must all be greater than 9. Please note however, we still need to search the upper right and bottom left quadrant, even though the example below seems to show all elements in the two mentioned quadrants are greater than 9.
Of course, if the center element is our target element, we have found the target and stop searching. If not, we proceed by searching the rest of three quadrants.
What’s the complexity of the Quad Partition method? As it turns out, the run time complexity could be written directly as a recurrence relation:
T(n) = 3T(n/2) + c, where n is the dimension of the matrix.
We add a constant c because each step we do a comparison between the target element and the center element, which takes some constant time.
We need to solve the above equation to obtain the complexity. This is where most confusion comes in. If you have taken advanced algorithm course, you could solve it using the Master’s theorem, but you don’t really need to. You could just expand the recurrence relation directly to solve it.
Below is the code for the Quad Partition method. l and u represents the upper left corner, while r and d represents the bottom right corner of the matrix. Be very careful of corner cases. Please note that the code below checks for when lequals r (left = right) and u equals d (up = down) (ie, the matrix has only one element). If this only element differs from the target, the function must return false. If you omit this condition, then the code below never terminates, which in other word translates to: You never double check your code, and it is Hasta la vista, baby from your interviewer.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
boolquadPart(intmat[][N_MAX],intM,intN,inttarget,intl,intu,intr,intd,int&targetRow,int&targetCol){
if(l>r||u>d)returnfalse;
if(target<mat[u][l]||target>mat[d][r])returnfalse;
intcol=l+(r-l)/2;
introw=u+(d-u)/2;
if(mat[row][col]==target){
targetRow=row;
targetCol=col;
returntrue;
}elseif(l==r&&u==d){
returnfalse;
}
if(mat[row][col]>target){
returnquadPart(mat,M,N,target,col+1,u,r,row,targetRow,targetCol)||
quadPart(mat,M,N,target,l,row+1,col,d,targetRow,targetCol)||
quadPart(mat,M,N,target,l,u,col,row,targetRow,targetCol);
}else{
returnquadPart(mat,M,N,target,col+1,u,r,row,targetRow,targetCol)||
quadPart(mat,M,N,target,l,row+1,col,d,targetRow,targetCol)||
quadPart(mat,M,N,target,col+1,row+1,r,d,targetRow,targetCol);
}
}
boolquadPart(intmat[][N_MAX],intN,inttarget,int&row,int&col){
returnquadPart(mat,N,N,target,0,0,N-1,N-1,row,col);
}
|
3.Binary Partition:
We can even reduce the number of sub-problems from three to only two using a method we called Binary Partition. This time we traverse along either the middle row, middle column, or diagonally (as shown in highlighted gray cells in imagesa), b), and c) below). As we traverse, we find the point such that the target element s satisfies the following condition:
ai < s < ai+1, where ai is the i
th
traversed cell.
If the target element equals one of the traversed cells, we immediately return the element as found. Otherwise we partition the matrix into two sub-matrices following the partition point we found. As it turns out, we need cn time (linear time) to find such partition point, since we are essentially performing a linear search. Therefore, the complexity could be written as the following recurrence relation: (Note: I omitted the proof, as it is left as an exercise to the reader. )
T(n) = 2T(n/2) + cn
= O(n lg n)
The Binary Partition algorithm runs in O(n lg n) time. You might expect its complexity to be lower than Quad Partition, since it has only two sub-problems (instead of three) to solve. The reason of the higher order complexity is due to the extra O(n) time doing a linear search for the partition point where ai < s < ai+1.
Please note that the matrix is not necessarily divided into two equal-sized sub-matrices. One of the matrix could be bigger than the other one, or in the extreme case, the other matrix could be of size zero. Here, we have made an assumption that each partition step divides the matrix into two equal-sized sub-matrices, just for the sake of complexity analysis.
Below is the code for the Binary Partition method. The code below chooses the middle column as the place to search for the partition point.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
boolbinPart(intmat[][N_MAX],intM,intN,inttarget,intl,intu,intr,intd,int&targetRow,int&targetCol){
if(l>r||u>d)returnfalse;
if(target<mat[u][l]||target>mat[d][r])returnfalse;
intmid=l+(r-l)/2;
introw=u;
while(row<=d&&mat[row][mid]<=target){
if(mat[row][mid]==target){
targetRow=row;
targetCol=mid;
returntrue;
}
row++;
}
returnbinPart(mat,M,N,target,mid+1,u,r,row-1,targetRow,targetCol)||
binPart(mat,M,N,target,l,row,mid-1,d,targetRow,targetCol);
}
boolbinPart(intmat[][N_MAX],intN,inttarget,int&row,int&col){
returnbinPart(mat,N,N,target,0,0,N-1,N-1,row,col);
}
|
4.
Improved Binary Partition: 在遍历中间那一row / column 时使用二分 来找。
Since the partition column (or row, or diagonal) is sorted, not utilizing the sorted configuration is a waste. In fact, we are able to modify binary search to search for the partition point in lg n time. Then, the complexity can be expressed as the following recurrence relation: (Note: I’ve omitted some steps, try to work out the math by yourself)
By incorporating binary search, we are able to reduce the complexity to O(n). However, we have made an assumption, that is: Each subdivision of matrices must be of equal size (or, each partition point is exactly at the center of the partition column). This leads to the following question:
This turns out to be a difficult question to answer, but I could provide further insight to you by deriving the complexity of the other extreme, that is:
For an example of the above case, try searching for –1 in the above sample matrix shown in image (a). Since each subdivision results in the original matrix being halved, the total number of subdivisions can be at most lg n times. Assuming each binary search performed before a subdivision takes c lg n time, the complexity can be expressed as follow:
As you can see, the run time complexity of this extreme case is O(lg n)2, which turns out to be even less than O(n). We conclude that this is not the worst case scenario, as some people might believe.
Please note that the worst case for the Improved Binary Partition method had not been proven here. We had merely proven that one case of the Improved Binary Partition could run in O(n). If you know the proof of the worst case, I would be interested to hear from you.
Next Problem:
2D Matrix(n * n) of positive and negative numbers is given. Matrix is sorted rowwise and columnwise. You have to return the count of -ve numbers in most optimal way.
Searching a 2D Sorted Matrix Part I的更多相关文章
- [LintCode] Kth Smallest Number in Sorted Matrix 有序矩阵中第K小的数字
Find the kth smallest number in at row and column sorted matrix. Have you met this question in a rea ...
- Lintcode: Kth Smallest Number in Sorted Matrix
Find the kth smallest number in at row and column sorted matrix. Example Given k = 4 and a matrix: [ ...
- Lintcode401 Kth Smallest Number in Sorted Matrix solution 题解
[题目描述] Find the kth smallest number in at row and column sorted matrix. 在一个排序矩阵中找从小到大的第 k 个整数. 排序矩阵的 ...
- Kth Smallest Number in Sorted Matrix
Find the kth smallest number in at row and column sorted matrix. Example Given k = 4 and a matrix: [ ...
- sorted matrix - search & find-k-th
sorted matrix ( Young Matrix ) search for a given value in the matrix: 1) starting from upper-right ...
- LeetCode 378. 有序矩阵中第K小的元素(Kth Smallest Element in a Sorted Matrix) 13
378. 有序矩阵中第K小的元素 378. Kth Smallest Element in a Sorted Matrix 题目描述 给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩 ...
- 【LeetCode】378. Kth Smallest Element in a Sorted Matrix 解题报告(Python)
[LeetCode]378. Kth Smallest Element in a Sorted Matrix 解题报告(Python) 标签: LeetCode 题目地址:https://leetco ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- Leetcode:378. Kth Smallest Element in a Sorted Matrix
题目: Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the ...
随机推荐
- 济南学习 Day 5 T1 pm
欧拉函数(phi)题目描述: 已知(N),求phi(N). 输入说明: 正整数N. 输出说明: 输出phi(N). 样例输入: 8 样例输出: 4 数据范围: 对于20%的数据,N<=10^5 ...
- 如何在DOS下用C/C++ 编译器
本文来自CSDN博客 ★★ 注意:以下适合 PC 环境 ★★ ●C/C++ 编译器需要的环境变数设定 古早以来,PC 上的 C 编译器,就需要两个环境变数: LIB:这个环 ...
- 《UNIX编程艺术》读书笔记
最近这段时间比较忙,利用业余时间看完了这本书.虽然书中讲到的很多例子都是上古文物,我没有用过,不过原理都是相通的,对我的启发很大.比如无所不在的KISS原则,实践中慢慢体会到的SPOT原则,无不产生共 ...
- iOS开发零基础教程之生成git所需的SSH keys
在我们github看到了一个不错的第三方库时,可能我们想把他git clone到本地,我们需要复制他的SSH URL,如下图: 复制完地址之后,我们需要打开终端,然后输入命令: git clone + ...
- 《Apache服务之php/perl/cgi语言的支持》RHEL6——服务的优先级
安装php软件包: 安装文本浏览器 安装apache的帮助文档: 测试下是否ok 启动Apache服务关闭火墙: 编辑一个php测试页测试下: perl语言包默认系统已经安装了,直接测试下: Apac ...
- ajax对一些没有接口的数据进行分析和添加方法
对于一些没有接口的数据进行分析和添加方法: <script src="ajax.js"><script>//插入ajax文件 <script> ...
- JS 获取select(多选下拉)中所选值的示例代码
通过js获取select(多选下拉)中所选值,具体实现如下,有需要的朋友可以参考下,希望对大家有所帮助 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML ...
- node.js和socket.io纯js实现的即时通讯实例分享
在这个例子中,其实node.js并没有真正起到服务器的作用,因为我们这里可以直接运行client.html文件,而不用输入url请求,当 然,要想输入url请求页面内容还需要加入请求静态文件的代码.这 ...
- oracle创建用户,修改用户,删除用户等关于用户的
--直接修改底层表 USER$ 更换用户名 1.windows 平台下运行 cmd 2.sqlplus /nolog 3.SQL> conn SYSTEM/123@ORCL as sysdba ...
- Golang学习笔记
一.基础 1. Hello World程序 demo: package main import "fmt" // 注释 //注释 func main() { fmt.Printf( ...