OpenCV源码阅读(2)---matx.h---函数的内联实现
外部矩阵计算函数
namespace internal
{
template<typename _Tp, int m> struct Matx_DetOp
{
double operator ()(const Matx<_Tp, m, m>& a) const
{
Matx<_Tp, m, m> temp = a;
double p = LU(temp.val, m*sizeof(_Tp), m, 0, 0, 0);
if( p == 0 )
return p;
for( int i = 0; i < m; i++ )
p *= temp(i, i);
return 1./p;
}
};
template<typename _Tp> struct Matx_DetOp<_Tp, 1>
{
double operator ()(const Matx<_Tp, 1, 1>& a) const
{
return a(0,0);
}
};
template<typename _Tp> struct Matx_DetOp<_Tp, 2>
{
double operator ()(const Matx<_Tp, 2, 2>& a) const
{
return a(0,0)*a(1,1) - a(0,1)*a(1,0);
}
};
template<typename _Tp> struct Matx_DetOp<_Tp, 3>
{
double operator ()(const Matx<_Tp, 3, 3>& a) const
{
return a(0,0)*(a(1,1)*a(2,2) - a(2,1)*a(1,2)) -
a(0,1)*(a(1,0)*a(2,2) - a(2,0)*a(1,2)) +
a(0,2)*(a(1,0)*a(2,1) - a(2,0)*a(1,1));
}
};
上面的函数定义了矩阵行列式计算的计算。高于3阶的矩阵使用LU分解算法,低于3阶矩阵对Matx_DetOp进行了重载,使用直接计算行列式的方式来计算。这里使用的是在结构体里定义计算的方式。这样做的目的是什么呢?需要继续看类是如何调用这些操作的
template<typename _Tp> Vec<_Tp, 2> inline conjugate(const Vec<_Tp, 2>& v)
{
return Vec<_Tp, 2>(v[0], -v[1]);
}
template<typename _Tp> Vec<_Tp, 4> inline conjugate(const Vec<_Tp, 4>& v)
{
return Vec<_Tp, 4>(v[0], -v[1], -v[2], -v[3]);
}
这里使用内联的方式来实现向量共轭的计算。。。但是向量类中并没有定义共轭函数conjugate,只有一个conj。这是错误吗?
矩阵构造函数与基本运算
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx()
{
for(int i = 0; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0)
{
val[0] = v0;
for(int i = 1; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1)
{
CV_StaticAssert(channels >= 2, "Matx should have at least 2 elaments.");
val[0] = v0; val[1] = v1;
for(int i = 2; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2)
{
CV_StaticAssert(channels >= 3, "Matx should have at least 3 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2;
for(int i = 3; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3)
{
CV_StaticAssert(channels >= 4, "Matx should have at least 4 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
for(int i = 4; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4)
{
CV_StaticAssert(channels >= 5, "Matx should have at least 5 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4;
for(int i = 5; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5)
{
CV_StaticAssert(channels >= 6, "Matx should have at least 6 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5;
for(int i = 6; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6)
{
CV_StaticAssert(channels >= 7, "Matx should have at least 7 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6;
for(int i = 7; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7)
{
CV_StaticAssert(channels >= 8, "Matx should have at least 8 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
for(int i = 8; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8)
{
CV_StaticAssert(channels >= 9, "Matx should have at least 9 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
val[8] = v8;
for(int i = 9; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9)
{
CV_StaticAssert(channels >= 10, "Matx should have at least 10 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
val[8] = v8; val[9] = v9;
for(int i = 10; i < channels; i++) val[i] = _Tp(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11)
{
CV_StaticAssert(channels == 12, "Matx should have at least 12 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11;
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13, _Tp v14, _Tp v15)
{
CV_StaticAssert(channels == 16, "Matx should have at least 16 elaments.");
val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3;
val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7;
val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11;
val[12] = v12; val[13] = v13; val[14] = v14; val[15] = v15;
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n>::Matx(const _Tp* values)
{
for( int i = 0; i < channels; i++ ) val[i] = values[i];
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::all(_Tp alpha)
{
Matx<_Tp, m, n> M;
for( int i = 0; i < m*n; i++ ) M.val[i] = alpha;
return M;
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::zeros()
{
return all(0);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::ones()
{
return all(1);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::eye()
{
Matx<_Tp,m,n> M;
for(int i = 0; i < shortdim; i++)
M(i,i) = 1;
return M;
}
template<typename _Tp, int m, int n> inline
_Tp Matx<_Tp, m, n>::dot(const Matx<_Tp, m, n>& M) const
{
_Tp s = 0;
for( int i = 0; i < channels; i++ ) s += val[i]*M.val[i];
return s;
}
template<typename _Tp, int m, int n> inline
double Matx<_Tp, m, n>::ddot(const Matx<_Tp, m, n>& M) const
{
double s = 0;
for( int i = 0; i < channels; i++ ) s += (double)val[i]*M.val[i];
return s;
}
/** @cond IGNORED */
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d)
{
Matx<_Tp,m,n> M;
for(int i = 0; i < shortdim; i++)
M(i,i) = d(i, 0);
return M;
}
这一大段使用内联函数实现了矩阵的定义和加,减,点乘,点除等基础操作,使用内联的作用是提高效率。可以看出,对于低阶矩阵,opencv的做法十分粗暴,直接访问数组数据成员,然后赋值。不过在赋值和构造之前使用了CV_staticAssert来验证是否会溢出,这是c++的断言功能,不知opencv是如何重新利用的。
template<typename _Tp, int m, int n> template<typename T2>
inline Matx<_Tp, m, n>::operator Matx<T2, m, n>() const
{
Matx<T2, m, n> M;
for( int i = 0; i < m*n; i++ ) M.val[i] = saturate_cast<T2>(val[i]);
return M;
}
这个函数作用是操作符的重载,重载了操作符(),作用是复制一个矩阵。其中使用了saturate_cast<T2>
模板函数,作用是防止内存溢出,但是这个函数不在这个文件中,我猜在bufferpool.h里。
template<typename _Tp, int m, int n> template<int m1, int n1> inline
Matx<_Tp, m1, n1> Matx<_Tp, m, n>::reshape() const
{
CV_StaticAssert(m1*n1 == m*n, "Input and destnarion matrices must have the same number of elements");
return (const Matx<_Tp, m1, n1>&)*this;
}
reshape函数,作用是将具有相同元素数目的矩阵转换形式。例如9*1–>3*3
template<typename _Tp, int m, int n>
template<int m1, int n1> inline
Matx<_Tp, m1, n1> Matx<_Tp, m, n>::get_minor(int i, int j) const
{
CV_DbgAssert(0 <= i && i+m1 <= m && 0 <= j && j+n1 <= n);
Matx<_Tp, m1, n1> s;
for( int di = 0; di < m1; di++ )
for( int dj = 0; dj < n1; dj++ )
s(di, dj) = (*this)(i+di, j+dj);
return s;
}
由矩阵的第i行,第j列开始,抽取一个较小的矩阵。
这里使用了this指针的方式,把this指针式只想类所定义的对象的指针,也就是说,如果定义Matx m(3,3), m.get_minor(2,2) 那么this指针是只想m的,所以可以用(*this)的方式表示提取m中的数据。
template<typename _Tp, int m, int n> inline
Matx<_Tp, 1, n> Matx<_Tp, m, n>::row(int i) const
{
CV_DbgAssert((unsigned)i < (unsigned)m);
return Matx<_Tp, 1, n>(&val[i*n]);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, 1> Matx<_Tp, m, n>::col(int j) const
{
CV_DbgAssert((unsigned)j < (unsigned)n);
Matx<_Tp, m, 1> v;
for( int i = 0; i < m; i++ )
v.val[i] = val[i*n + j];
return v;
}
提取第i行第j列的函数,对于提取行,可以直接使用val[i*n]
的方式,这种方式表达的是,因为val[m*n]
是一个m*n的数组,是一个一维数组。如果是一个行矩阵的话,可以用这个数组的首地址进行初始化,将母矩阵该行首地址作为子矩阵数据首地址即可。并且这些函数都是const类型,保护了原本矩阵的数据。
template<typename _Tp, int m, int n> inline
typename Matx<_Tp, m, n>::diag_type Matx<_Tp, m, n>::diag() const
{
diag_type d;
for( int i = 0; i < shortdim; i++ )
d.val[i] = val[i*n + i];
return d;
}
提取对角元素。
template<typename _Tp, int m, int n> inline
const _Tp& Matx<_Tp, m, n>::operator()(int i, int j) const
{
CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n );
return this->val[i*n + j];
}
template<typename _Tp, int m, int n> inline
_Tp& Matx<_Tp, m, n>::operator ()(int i, int j)
{
CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n );
return val[i*n + j];
}
template<typename _Tp, int m, int n> inline
const _Tp& Matx<_Tp, m, n>::operator ()(int i) const
{
CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row");
CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) );
return val[i];
}
template<typename _Tp, int m, int n> inline
_Tp& Matx<_Tp, m, n>::operator ()(int i)
{
CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row");
CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) );
return val[i];
}
重载操作符(),用于访问矩阵内元素,操作符重载是c++中非常重要的操作。这里使用了_Tp & Matx<_Tp,m,n>::operator ()(int i,int j){}
是把操作符重载为成员函数的做法。其中,i是第一个操作数,j是第二个操作数。
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp)
{
for( int i = 0; i < channels; i++ )
val[i] = saturate_cast<_Tp>(a.val[i] + b.val[i]);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp)
{
for( int i = 0; i < channels; i++ )
val[i] = saturate_cast<_Tp>(a.val[i] - b.val[i]);
}
template<typename _Tp, int m, int n> template<typename _T2> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp)
{
for( int i = 0; i < channels; i++ )
val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp)
{
for( int i = 0; i < channels; i++ )
val[i] = saturate_cast<_Tp>(a.val[i] * b.val[i]);
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp)
{
for( int i = 0; i < channels; i++ )
val[i] = saturate_cast<_Tp>(a.val[i] / b.val[i]);
}
template<typename _Tp, int m, int n> template<int l> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp)
{
for( int i = 0; i < m; i++ )
for( int j = 0; j < n; j++ )
{
_Tp s = 0;
for( int k = 0; k < l; k++ )
s += a(i, k) * b(k, j);
val[i*n + j] = s;
}
}
template<typename _Tp, int m, int n> inline
Matx<_Tp,m,n>::Matx(const Matx<_Tp, n, m>& a, Matx_TOp)
{
for( int i = 0; i < m; i++ )
for( int j = 0; j < n; j++ )
val[i*n + j] = a(j, i);
}
特殊的矩阵构造函数
定义了矩阵的基本操作,包括加减乘除缩放,这些操作作为矩阵的构造函数,可以生成一个新的矩阵,也就是支持由两个矩阵生成新的矩阵。
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::mul(const Matx<_Tp, m, n>& a) const
{
return Matx<_Tp, m, n>(*this, a, Matx_MulOp());
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> Matx<_Tp, m, n>::div(const Matx<_Tp, m, n>& a) const
{
return Matx<_Tp, m, n>(*this, a, Matx_DivOp());
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, n, m> Matx<_Tp, m, n>::t() const
{
return Matx<_Tp, n, m>(*this, Matx_TOp());
template<typename _Tp, int m, int n> inline
}
Vec<_Tp, n> Matx<_Tp, m, n>::solve(const Vec<_Tp, m>& rhs, int method) const
{
Matx<_Tp, n, 1> x = solve((const Matx<_Tp, m, 1>&)(rhs), method);
return (Vec<_Tp, n>&)(x);
}
template<typename _Tp, int m> static inline
double determinant(const Matx<_Tp, m, m>& a)
{
return internal::Matx_DetOp<_Tp, m>()(a);
}
template<typename _Tp, int m, int n> static inline
double trace(const Matx<_Tp, m, n>& a)
{
_Tp s = 0;
for( int i = 0; i < std::min(m, n); i++ )
s += a(i,i);
return s;
}
template<typename _Tp, int m, int n> static inline
double norm(const Matx<_Tp, m, n>& M)
{
return std::sqrt(normL2Sqr<_Tp, double>(M.val, m*n));
}
template<typename _Tp, int m, int n> static inline
double norm(const Matx<_Tp, m, n>& M, int normType)
{
return normType == NORM_INF ? (double)normInf<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n) :
normType == NORM_L1 ? (double)normL1<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n) :
std::sqrt((double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n));
}
实现矩阵本身的乘,除,转置操作。如果已经有了一个两个矩阵,可以以成员函数的方式来生成结果。例如
Matx a(####);
Matx b(####);
Matx c;
c=a.mul(b);
Matx d(a,b,Mul_OP)
template<typename _Tp, typename _T2, int m, int n> static inline
MatxCommaInitializer<_Tp, m, n> operator << (const Matx<_Tp, m, n>& mtx, _T2 val)
{
MatxCommaInitializer<_Tp, m, n> commaInitializer((Matx<_Tp, m, n>*)&mtx);
return (commaInitializer, val);
}
template<typename _Tp, int m, int n> inline
MatxCommaInitializer<_Tp, m, n>::MatxCommaInitializer(Matx<_Tp, m, n>* _mtx)
: dst(_mtx), idx(0)
{}
template<typename _Tp, int m, int n> template<typename _T2> inline
MatxCommaInitializer<_Tp, m, n>& MatxCommaInitializer<_Tp, m, n>::operator , (_T2 value)
{
CV_DbgAssert( idx < m*n );
dst->val[idx++] = saturate_cast<_Tp>(value);
return *this;
}
template<typename _Tp, int m, int n> inline
Matx<_Tp, m, n> MatxCommaInitializer<_Tp, m, n>::operator *() const
{
CV_DbgAssert( idx == n*m );
return *dst;
}
一种往已有矩阵添加数的方法,具体情况不清楚。
///////////////////////////// Matx out-of-class operators ////////////////////////////////
template<typename _Tp1, typename _Tp2, int m, int n> static inline
Matx<_Tp1, m, n>& operator += (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b)
{
for( int i = 0; i < m*n; i++ )
a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]);
return a;
}
template<typename _Tp1, typename _Tp2, int m, int n> static inline
Matx<_Tp1, m, n>& operator -= (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b)
{
for( int i = 0; i < m*n; i++ )
a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]);
return a;
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator + (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b)
{
return Matx<_Tp, m, n>(a, b, Matx_AddOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b)
{
return Matx<_Tp, m, n>(a, b, Matx_SubOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, int alpha)
{
for( int i = 0; i < m*n; i++ )
a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
return a;
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, float alpha)
{
for( int i = 0; i < m*n; i++ )
a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
return a;
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, double alpha)
{
for( int i = 0; i < m*n; i++ )
a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha);
return a;
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, int alpha)
{
return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, float alpha)
{
return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, double alpha)
{
return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (int alpha, const Matx<_Tp, m, n>& a)
{
return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (float alpha, const Matx<_Tp, m, n>& a)
{
return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator * (double alpha, const Matx<_Tp, m, n>& a)
{
return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp());
}
template<typename _Tp, int m, int n> static inline
Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a)
{
return Matx<_Tp, m, n>(a, -1, Matx_ScaleOp());
}
template<typename _Tp, int m, int n, int l> static inline
Matx<_Tp, m, n> operator * (const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b)
{
return Matx<_Tp, m, n>(a, b, Matx_MatMulOp());
}
template<typename _Tp, int m, int n> static inline
Vec<_Tp, m> operator * (const Matx<_Tp, m, n>& a, const Vec<_Tp, n>& b)
{
Matx<_Tp, m, 1> c(a, b, Matx_MatMulOp());
return (const Vec<_Tp, m>&)(c);
}
非成员函数的运算符重载,将重载后的操作定义在类外。
_Tp& operator *(
const_Tp &a,const_Tp &b){a=a+b;return a;}
返回引用的意思是返回返回值的引用。
比如上面代码的意思就是返回a的引用
执行c=a*b那么c就是a的引用,而a又是a+b并且这个函数没有定义变量,也就是说没有额外的内存开销,所有使用的变量都是前面程序里面已经有的。这里千万不能有const 因为一旦加上数据保护,那么这个数据就不能再更改了,a就还是a 最后c返回a 的引用没有什么意义
版权声明:本文为博主原创文章,未经博主允许不得转载。
OpenCV源码阅读(2)---matx.h---函数的内联实现的更多相关文章
- OpenCV源码阅读(1)---matx.h---mat类与vec类
matx.h matx类是opencv中的一个基础类,其位于core模块中,所执行的操作时opencv矩阵和向量的运算.如果熟悉基于matlab的图像处理,那么很容易想到,所有对图像的操作归根结底都是 ...
- OpenCV源码阅读(3)---matx.h---学习心得
在.h文件里定义类,可以通过内联函数的方法完成类基础函数的实现,这样就不需要额外写.cpp文件来写类的内容. 对于操作符重载,可以使用返回应用的方式减小内存开销 _Tp& someclass: ...
- [PHP源码阅读]explode和implode函数
explode和implode函数主要用作字符串和数组间转换的操作,比如获取一段参数后根据某个字符分割字符串,或者将一个数组的结果使用一个字符合并成一个字符串输出.在PHP中经常会用到这两个函数,因此 ...
- CI框架源码阅读笔记3 全局函数Common.php
从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...
- [PHP源码阅读]empty和isset函数
近日被问到PHP中empty和isset函数时怎么判断变量的,刚开始我是一脸懵逼的,因为我自己也只是一知半解,为了弄懂其真正的原理,赶紧翻开源码研究研究.经过分析可发现两个函数调用的都是同一个函数,因 ...
- PHP源码阅读(一):str_split函数
注:源码版本:php5.6.33. 函数简介 str_split 原型: array str_split ( string $string [, int $split_length = 1 ] ) 说 ...
- [PHP源码阅读]array_pop和array_shift函数
上篇文章介绍了PHP添加元素到数组的函数,那么当然有从数组中删除元素.array_pop和array_shift只从数组的头或尾删除一个元素.经过阅读源码,发现这两个函数的实现都是调用了同一个函数-- ...
- [PHP源码阅读]array_push和array_unshift函数
在PHP中,在数组中添加元素也是一种很常用的操作,分别有在数组尾部和头部添加元素,看看PHP内部是如何实现数组插入的操作. 我在github有对PHP源码更详细的注解.感兴趣的可以围观一下,给个sta ...
- opencv源码阅读之——iOS的两条接口UIImageToMat()和MatToUIImage()
本文为作者原创,未经允许不得转载:原文由作者发表在博客园: http://www.cnblogs.com/panxiaochun/p/5387743.html 在ios下开发基于opencv的程序时经 ...
随机推荐
- 查看SQL Server 备份信息
RESTORE HEADERONLY FROM DISK = N'C:\Program Files\Microsoft SQL Server\MSSQL10_50.SQL2008\MSSQL\Back ...
- linux 文件属性
关于属性的结构 在linux下文件和文件夹都被认为是文件, 所以以下的这个属性对文件和文件夹通用 获取属性的函数有stat/fstat/lstat/fstat struct stat{ mode_t ...
- 初见IOS的UI之:UI控件的属性frame bounds center 和transform
这些属性,内部都是结构体:CGRect CGPoint CGFloat 背景知识:所有的控件都是view的子类,屏幕就是一个大的view:每个view都有个viewController,它是view的 ...
- Winform控件学习-TreeView - ContextMenuStrip
首先,要向窗体添加一个TreeView控件: 然后再添加一个ContextMenuStrip控件: 接下就要给TreeView添加一个MouseDown事件,代码如下: Example 1 priva ...
- div 布局
转:http://blog.csdn.net/mercop/article/details/7882000 HTML CSS + DIV实现整体布局 1.技术目标: 开发符合W3C标准的Web页面 理 ...
- Thinkphp中路由Url获取的使用方法
Thinkphp是一个体系较为完整的框架,很多地方比国外的框架功能都全,唯一不喜之处是性能,和传说中的.NET有点像. Thinkphp提供较全url处理体系,通过同一规则实现Url的路由和Url生成 ...
- Win7(包括32和64位)使用GitHub
关于安装路径:32位可选择安装目录,但64位建议使用默认安装目录,否则Git Extensions配置会出问题 安装参考网址 http://code.google.com/p/tortoisegit/ ...
- [spring]启动时报错:NoSuchMethodError: javax.servlet.http.HttpServletResponse.getStatus()I
Spring V4.1以后的版本在不支持Servlet3.0的应用服务器上跑时会报如下错误: NoSuchMethodError: javax.servlet.http.HttpServletResp ...
- 2013 Asia Regional Changchun
Hard Code http://acm.hdu.edu.cn/showproblem.php?pid=4813 #include<cstdio> ]; int main(){ int t ...
- iOS开发之深入探讨runtime机制01-类与对象
最近有个同事问我关于“runtime机制”的问题,我想可能很多人对这个都不是太清楚,在这里,和大家分享一下我对于runtime机制的理解.要深入理解runtime,首先要从最基本的类与对象开始,本文将 ...