Maximum Product Subarray

Title:

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:

max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]),  min_local * A[i])

min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]),  min_local * A[i])

class Solution {
public:
int maxProduct(vector<int>& nums) {
int pmin = nums[];
int pmax = nums[];
int result = nums[];
for (int i = ; i < nums.size(); i++){
int t1= pmax * nums[i];
int t2= pmin * nums[i];
pmax = max(nums[i],max(t1,t2));
pmin = min(nums[i],min(t1,t2));
result = max(result,pmax);
}
return result;
}
};

Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

http://blog.csdn.net/joylnwang/article/details/6859677

http://blog.csdn.net/linhuanmars/article/details/21314059

class Solution{
public:
int maxSubArray(int A[], int n) {
int maxSum = A[];
int sum = A[];
for (int i = ; i < n; i++){
if (sum < )
sum = ;
sum += A[i];
maxSum = max(sum,maxSum);
}
return maxSum;
}
};

扩展:子序列之和最接近于0

先对数组进行累加,这样得到同样长度的数组,然后,对数组排序,对排序后的数组相邻的元素相减计算绝对值,并比较大小。

class Solution{
public:
vector<int> simple(vector<int> nums,int target){
int min_gap = INT_MAX;
int index_min ;
int index_max;
for (int i = ; i < nums.size(); i++){
int sum = ;
for (int j = i; j < nums.size(); j++){
sum += nums[j];
if (min_gap > abs(sum-target)){
min_gap = abs(sum-target);
index_min = i;
index_max = j;
}
}
}
vector<int> result(nums.begin()+index_min,nums.begin()+index_max+);
return result;
}
vector<int> choose(vector<int> nums, int target){
vector<pair<int,int> > addSums(nums.size());
addSums[] = make_pair(nums[],);
for (int i =; i < nums.size(); i++){
addSums[i] = make_pair(addSums[i-].first + nums[i],i);
}
sort(addSums.begin(),addSums.end());
int min_gap = INT_MAX;
int index = -;
for (int i = ; i < addSums.size(); i++){
int t = abs(addSums[i].first - addSums[i-].first);
if (min_gap > t){
min_gap = t;
index = i;
}
}
int index_min = min(addSums[index].second,addSums[index-].second);
int index_max = max(addSums[index].second,addSums[index-].second);
vector<int> result(nums.begin()+index_min+,nums.begin()+index_max+);
return result;
}
};

这种做法我没有想到如何扩展到任意的t上面

LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关的更多相关文章

  1. 求连续最大子序列积 - leetcode. 152 Maximum Product Subarray

    题目链接:Maximum Product Subarray solutions同步在github 题目很简单,给一个数组,求一个连续的子数组,使得数组元素之积最大.这是求连续最大子序列和的加强版,我们 ...

  2. LeetCode Maximum Product Subarray(枚举)

    LeetCode Maximum Product Subarray Description Given a sequence of integers S = {S1, S2, . . . , Sn}, ...

  3. [Swift]LeetCode152. 乘积最大子序列 | Maximum Product Subarray

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  4. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  5. [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  6. 152. Maximum Product Subarray - LeetCode

    Question 152. Maximum Product Subarray Solution 题目大意:求数列中连续子序列的最大连乘积 思路:动态规划实现,现在动态规划理解的还不透,照着公式往上套的 ...

  7. 【LeetCode】Maximum Product Subarray 求连续子数组使其乘积最大

    Add Date 2014-09-23 Maximum Product Subarray Find the contiguous subarray within an array (containin ...

  8. [LeetCode]152. Maximum Product Subarray

    This a task that asks u to compute the maximum product from a continue subarray. However, you need t ...

  9. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

随机推荐

  1. 【POJ】【3164】Commond Network

    最小树形图 最小树形图模板题,朱-刘算法. 题解:http://blog.csdn.net/shuangde800/article/details/8039359 这位大神代码写的非常通俗易懂,而且这 ...

  2. 【C# 反射泛型】

    C# 反射泛型 摘自:http://www.itwis.com/html/net/c/20110411/10175.html C#泛型反射和普通反射的区别,泛型反射和普通反射的区别就是泛型参数的处理上 ...

  3. linux源代码阅读笔记 get_free_page()代码分析

    /* 34 * Get physical address of first (actually last :-) free page, and mark it 35 * used. If no fre ...

  4. Chp4: Trees and Graphs

    1.Type of Tree 1. Binary Tree: a binary tree is a tree in which each node has at most two child node ...

  5. hdoj 2202 最大三角形

    题目大意:给定n(3<=n<=50000)个点,求其中任意三个点组成的三角形面积最大,输出该面积. 题目传送:http://acm.hdu.edu.cn/showproblem.php?p ...

  6. REST_FRAMEWORK加深记忆-加了用户登陆认证,自定义权限的API接口

    哈哈,终于快结束了.. urls.py from django.conf.urls import include, url from django.contrib import admin urlpa ...

  7. Oracle 6 - 锁和闩 - 并发问题和隔离级别

    并发带来的问题 1.脏读dirty read 脏读的问题是transaction读到了没有被提交的数据.例如,T1更新了data1,还没提交,这时T2读取了更新后的data1, 用于计算和更新别的值, ...

  8. GitHub 开源工具整理

    技术站点 Hacker News:非常棒的针对编程的链接聚合网站 Programming reddit:同上 MSDN:微软相关的官方技术集中地,主要是文档类 infoq:企业级应用,关注软件开发领域 ...

  9. 可持久化trie 学习总结

    QAQ 以前一直觉得可持久化trie很难,今天强行写了一发觉得还是蛮简单的嘛 自己的模板是自己手写的,写了几道题目并没有出过错误 THUSC的第二题的解法五貌似就是可持久化trie,时间复杂度O(60 ...

  10. jvm调优具体参数配置

    3.JVM参数 在JVM启动参数中,可以设置跟内存.垃圾回收相关的一些参数设置,默认情况不做任何设置JVM会工作的很好,但对一些配置很好的Server和具体的应用必须仔细调优才能获得最佳性能.通过设置 ...