题意:

求sum{gcd(i, j) | 1 ≤ i < j ≤ n}

分析:

有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x有phi(n/i)个,其中Phi为欧拉函数。

所以枚举i和i的倍数n,累加i * phi(n/i)即可。

 #include <cstdio>
typedef long long LL; const int maxn = ; int phi[maxn + ];
LL f[maxn + ]; void phi_table()
{
phi[] = ;
for(int i = ; i <= maxn; i++) if(!phi[i])
for(int j = i; j <= maxn; j += i)
{
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-);
}
} int main()
{
phi_table(); for(int i = ; i <= maxn; i++)
for(int j = i*; j <= maxn; j += i)
f[j] += i * phi[j / i];
for(int i = ; i <= maxn; i++) f[i] += f[i - ]; int n;
while(scanf("%d", &n) == && n) printf("%lld\n", f[n]); return ;
}

代码君

UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)的更多相关文章

  1. UVA 11426 (欧拉函数&&递推)

    题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...

  2. UVA - 11426 欧拉函数(欧拉函数表)

    题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...

  3. GCD - Extreme (II) UVA - 11426 欧拉函数与gcd

    题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...

  4. GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导

    Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...

  5. UVa 10837 (欧拉函数 搜索) A Research Problem

    发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时 ...

  6. UVa 11440 (欧拉函数) Help Tomisu

    题意: 给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数. 分析: 首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素 对于k大于M!,k与M!互素等价于 ...

  7. UVA 10820 欧拉函数模板题

    这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...

  8. 【数论】【筛法求素数】【欧拉函数】bzoj2818 Gcd

    gcd(x,y)(1<=x,y<=n)为素数(暂且把(x,y)和(y,x)算一种) 的个数 <=> gcd(x/k,y/k)=1,k是x的质因数 的个数 <=> Σ ...

  9. Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。

    /** 题目:Trees in a Wood. UVA 10214 链接:https://vjudge.net/problem/UVA-10214 题意:给定a,b求 |x|<=a, |y|&l ...

随机推荐

  1. ORA-06550:line 1,column 7;PLS-00201:indentifer '存储过程' must be declared;...PL/SQL Statement ignored 问题

    前段时间由于修改SMES系统,出现了一个问题. ORA-06550:line 1,column 7;PLS-00201:indentifer '存储过程' must be declared;...PL ...

  2. lamada 表达式之神奇的groupby

    少说话多干活 先定义一个测试用的实体,接下来会用字段Name进行分组的 public class TestToRun { public string Name { get; set; }//名称 pu ...

  3. javascript_22_for_二维数组

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  4. win下Maven安装和基本设置

    注:本文介绍 Windows 平台上 Maven 的安装.Maven 3 需要运行在 JDK1.4 以上的版本上. 非原创:原创地址 http://www.ibm.com/developerworks ...

  5. 【转】Tarjan&LCA题集

    转自:http://blog.csdn.net/shahdza/article/details/7779356 [HDU][强连通]:1269 迷宫城堡 判断是否是一个强连通★2767Proving ...

  6. 2012 Asia JinHua Regional Contest

    Draw Something http://acm.hdu.edu.cn/showproblem.php?pid=4450 o(n)统计输入每个数的平方和. #include<cstdio> ...

  7. poj 3620 Avoid The Lakes(广搜,简单)

    题目 找最大的一片湖的面积,4便有1边相连算相连,4角不算. runtime error 有一种可能是 数组开的太小,越界了 #define _CRT_SECURE_NO_WARNINGS #incl ...

  8. Ubuntu环境下nutch2.2.1集成HBase0.94.25

    nutch2.2.1集成HBase0.94.25 (详见:http://duguyiren3476.iteye.com/blog/2085973 ) 1. 修改nutch的hbase配置 //将自己的 ...

  9. Android 用Activity的onTouchEvent来监听滑动手势

    package com.example.activityOnTouchEvent; import android.app.Activity; import android.os.Bundle; imp ...

  10. http://www.mxchip.com/talk/news/jishuwenzhang/2014-09-11/67.html

    http://www.mxchip.com/talk/news/jishuwenzhang/2014-09-11/67.html