poj3666
一道不错的dp题
就是最小修改代价,使序列变为一个非下降序或非上升(由于数据较弱直接求非下降即可,当然非上升非下降本质是一样的)
观察可得到,修改后得到的数列中的元素最后一定都在原序列中;
由此我们可以将原数列排序离散化;
在dp[i,j]表示新序列到第i个元素修改成原序列第j小的数所用的代价
易得dp[i,j]=min(dp[i-1,k])+abs(p[i]-a[j]) (1<=k<=j); a是原数列,p是排序后的
由于n<=1000 看起来这样的方程式O(n^3)会超时;
实际上,我们在处理的时候,完全可以优化成O(n^2);
由于abs(p[i]-a[j])是一个定值,不受k影响,所以我们可以先用dp[i,j]表示min(dp[i-1,k]) (1<=k<=j)
则dp[i,j+1]=min(d[i,j],d[i-1,j]);
最后再集体加上abs(p[i]-a[j])即可实现O(n^2)
var f:array[..,..] of longint;
a,p:array[..] of longint;
n,i,k1,k2,j,ans:longint; procedure swap(var a,b:longint);
var c:longint;
begin
c:=a;
a:=b;
b:=c;
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure sort(l,r: longint);
var i,j,x: longint;
begin
i:=l;
j:=r;
x:=a[(l+r) div ];
repeat
while a[i]<x do inc(i);
while x<a[j] do dec(j);
if not(i>j) then
begin
swap(a[i],a[j]);
inc(i);
j:=j-;
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; begin
readln(n);
for i:= to n do
begin
readln(a[i]);
p[i]:=a[i];
end;
sort(,n);
k1:=;
k2:=;
for i:= to n do
begin
k1:=k1 xor ;
k2:=k2 xor ;
f[k2,]:=f[k1,];
for j:= to n do
f[k2,j]:=min(f[k2,j-],f[k1,j]);
for j:= to n do
f[k2,j]:=f[k2,j]+abs(p[i]-a[j]);
end;
ans:=;
for i:= to n do
ans:=min(f[k2,i],ans);
writeln(ans);
end.
poj3666的更多相关文章
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
- POJ3666 线性dp_离散化_贪心
POJ3666 线性dp_离散化_贪心 就DP而言这个题不算难,但是难就难在贪心,还有离散化的思想上 题目大意:n个土堆,问你最少移动多少单位的图,可以使得这n个土堆变成单调的 dp[i][j]表示前 ...
- POJ3666 Making the Grade
POJ3666 Making the Grade 题意: 给定一个长度为n的序列A,构造一个长度为n的序列B,满足b非严格单调,并且最小化S=∑i=1N |Ai-Bi|,求出这个最小值S,1<= ...
- poj-3666
http://vjudge.net/problem/POJ-3666 题目是dp 题目; 简单dp 离散一下就好. 我们先来讲一讲不离散的,简单的懂了,其他的也很容易. dp[i] 代表这个数列以 ...
- LG2893/POJ3666 「USACO2008FEB」Making the Grade 线性DP+决策集优化
问题描述 LG2893 POJ3666 题解 对于\(A\)中的每一个元素,都将存在于\(B\)中. 对\(A\)离散化. 设\(opt_{i,j}\)代表\([1,i]\),结尾为\(j\)的最小代 ...
- Making the Grade(POJ3666)
题目大意: 给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调增或者单调减(不严格). 题解: 1.一开始我有一个猜想,就是不管怎么改变,最终的所有数都是原来的某个数. ...
- [poj3666]Making the Grade(DP/左偏树)
题目大意:给你一个序列a[1....n],让你求一个序列b[1....n],满足 bi =a && bc,则最小的调整可以是把b变成c. 所以归纳可知上面结论成立. dp[i][j] ...
- Making the Grade [POJ3666] [DP]
题意: 给定一个序列,以最小代价将其变成单调不增或单调不减序列,代价为Σabs(i变化后-i变化前),序列长度<=2000,单个数字<=1e9 输入:(第一行表示序列长度,之后一行一个表示 ...
- 【POJ3666】Making the Grade 离散化+DP
学到了一个引理:在满足S最小化的条件下,一定存在一种构造序列B的方案,使得序列B中的数值都来自于A中.(数学归纳法+中位数定理得证) 对于状态的表示来说,首先肯定有一个 i ,表示选到了第 i 个数时 ...
随机推荐
- 如何实现zs无限期试用
要删除的文件有两个,分别是.zs与10_0..zs保存的是版本号,10_0保存的是注册码,这两个文件存在的原理是:zend studio 每次启动的会检查这两个文件的创建时间,和当前日期对比,超过30 ...
- Oracle非默认监听的处理会遇到的问题以及处理方法
第一种情况:只是修改默认端口 1.当前监听状态: C:\Windows\system32>lsnrctl status LSNRCTL for 64-bit Windows: Version 1 ...
- DataGridView控件-学习笔记总结
1.GridColor属性用来获取或设置网格线的颜色 dataGridView1.GridColor=Color.Blue; 2.设置宽度 .高度 dataGridView1.Columns[].Wi ...
- 新的MOVE结构,和在项目中实际的感受
关于MVC/MVP的瑕疵 MVC 和 MVP是最简单,最脍炙人口的框架结构. 有一段时间, 凡事有一定规模的代码,我都会架在上面,甚至后台程序也不例外(预留出可以注册的用户交互接口,作为后台控制器). ...
- 【BZOJ2330】 [SCOI2011]糖果
Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...
- C#设计模式学习资料--外观模式
http://www.cf17.com/html/article/172.html http://blog.csdn.net/scucj/article/details/1374657 http:// ...
- maven+tomcat6-maven-plugin实现热部署及调试
maven project,特别是maven module项目默认情况下是是无法直接通过tomcat等容器部署的,如图,我要部署fastdev_web这个maven module,可以看出在tomca ...
- sed 常见用法
sed 1. 移除空白行 sed '/^$/d' file 2. 直接在文本中进行替换 sed 's/pattern/replacement/g' -i file -i[SUFFIX], --in-p ...
- 【BZOJ 3190】 3190: [JLOI2013]赛车 (半平面交)
3190: [JLOI2013]赛车 Description 这里有一辆赛车比赛正在进行,赛场上一共有N辆车,分别称为个g1,g2--gn.赛道是一条无限长的直线.最初,gi位于距离起跑线前进ki的位 ...
- [itint5]合并K个有序链表
merge sort,leet code里面曾经做过.但一开始没这么写,遍历来做,效率n*k了,用了merge sort后,变成logn*k. 用了dummy node.同时要注意size为0的情况. ...