代码下载


#include "CELLWinApp.hpp"
#include <gl/GLU.h>
#include <assert.h>
#include <math.h>
#pragma comment(lib,"opengl32.lib")
#pragma comment(lib,"glu32.lib")
/**
* 该例子展示如何点,线,面等数据,
* 主要用到的OpenGL函数及定义如下
GL_POINTS
GL_LINES
GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
GL_QUADS
GL_QUAD_STRIP
GL_POLYGON

绘制函数:改函数是OpenGL系统定义的函数,一些基本的绘制可以使用,效率较高
缺点是如果顶点数据不可随意组合:
参数有以下:相信有经验的大牛们,一看就知道是啥了,但对新手,我还是做个简单的介绍

T = texture coord :纹理坐标,四维
C = 颜色
N = 法线
V = 定点

V = vertex
2 = 元素的个数
F = 数据的格式: float
GL_V2F //! 数据是两个float,
GL_V3F //! 数据是三个个float

C = COLOR
4ub= 4个(r,g,b,a unsigned byte)
V = vertex
2f = 2 * float
GL_C4UB_V2F
GL_C4UB_V3F
GL_C3F_V3F
GL_N3F_V3F
GL_C4F_N3F_V3F
GL_T2F_V3F
GL_T4F_V4F
GL_T2F_C4UB_V3F
GL_T2F_C3F_V3F
GL_T2F_N3F_V3F
GL_T2F_C4F_N3F_V3F
GL_T4F_C4F_N3F_V4F

glInterleavedArrays( );
glDrawArrays( );
gluPerspective,以及如何自己生成一个矩阵,替代gluPerspective函数
同时加入键盘事件的处理,通过按'S'键切换绘制图元的类型
为了在应用层中回去键盘事件,需要对之前的基类做再次改造
将event函数声明成为虚函数,这样应用层可以进行重写。
如果你对Windows事件消息不熟悉,那你要看书了
*
*/
/**
* 顶点结构声明
*/
struct Vertex
{
unsigned char r, g, b, a;
float x, y, z;
};

Vertex g_points[] =
{
{ 255, 0, 0, 255, 0.0f, 0.0f, 0.0f },
{ 0, 255, 0, 255, 0.5f, 0.0f, 0.0f },
{ 0, 0, 255, 255, -0.5f, 0.0f, 0.0f },
{ 255, 255, 0, 255, 0.0f,-0.5f, 0.0f },
{ 255, 0, 255, 255, 0.0f, 0.5f, 0.0f }
};

Vertex g_lines[] =
{
{ 255, 0, 0, 255, -1.0f, 0.0f, 0.0f }, // Line #1
{ 255, 0, 0, 255, 0.0f, 1.0f, 0.0f },

{ 0, 255, 0, 255, 0.5f, 1.0f, 0.0f }, // Line #2
{ 0, 255, 0, 255, 0.5f,-1.0f, 0.0f },

{ 0, 0, 255, 255, 1.0f, -0.5f, 0.0f }, // Line #3
{ 0, 0, 255, 255, -1.0f, -0.5f, 0.0f }
};

Vertex g_lineStrip_and_lineLoop[] =
{
{ 255, 0, 0, 255, 0.5f, 0.5f, 0.0f },
{ 0, 255, 0, 255, 1.0f, 0.0f, 0.0f },
{ 0, 0, 255, 255, 0.0f,-1.0f, 0.0f },
{ 255, 255, 0, 255, -1.0f, 0.0f, 0.0f },
{ 255, 0, 0, 255, 0.0f, 0.0f, 0.0f },
{ 255, 0, 255, 255, 0.0f, 1.0f, 0.0f }
};

Vertex g_triangles[] =
{
{ 255, 0, 0, 255, -1.0f, 0.0f, 0.0f }, // Triangle #1
{ 0, 0, 255, 255, 1.0f, 0.0f, 0.0f },
{ 0, 255, 0, 255, 0.0f, 1.0f, 0.0f },

{ 255, 255, 0, 255, -0.5f,-1.0f, 0.0f }, // Triangle #2
{ 255, 0, 0, 255, 0.5f,-1.0f, 0.0f },
{ 0, 255, 255, 255, 0.0f,-0.5f, 0.0f }
};

Vertex g_triangleStrip[] =
{
{ 255, 0, 0, 255, -2.0f, 0.0f, 0.0f },
{ 0, 0, 255, 255, -1.0f, 0.0f, 0.0f },
{ 0, 255, 0, 255, -1.0f, 1.0f, 0.0f },
{ 255, 0, 255, 255, 0.0f, 0.0f, 0.0f },
{ 255, 255, 0, 255, 0.0f, 1.0f, 0.0f },
{ 255, 0, 0, 255, 1.0f, 0.0f, 0.0f },
{ 0, 255, 255, 255, 1.0f, 1.0f, 0.0f },
{ 0, 255, 0, 255, 2.0f, 1.0f, 0.0f }
};

Vertex g_triangleFan[] =
{
{ 255, 0, 0, 255, 0.0f,-1.0f, 0.0f },
{ 0, 255, 255, 255, 1.0f, 0.0f, 0.0f },
{ 255, 0, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 255, 0, 255, 0.0f, 1.0f, 0.0f },
{ 0, 0, 255, 255, -0.5f, 0.5f, 0.0f },
{ 0, 255, 0, 255, -1.0f, 0.0f, 0.0f }
};

Vertex g_quads[] =
{
{ 255, 0, 0, 255, -0.5f,-0.5f, 0.0f }, // Quad #1
{ 0, 255, 0, 255, 0.5f,-0.5f, 0.0f },
{ 0, 0, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 255, 0, 255, -0.5f, 0.5f, 0.0f },

{ 255, 0, 255, 255, -1.5f, -1.0f, 0.0f }, // Quad #2
{ 0, 255, 255, 255, -1.0f, -1.0f, 0.0f },
{ 255, 0, 0, 255, -1.0f, 1.5f, 0.0f },
{ 0, 255, 0, 255, -1.5f, 1.5f, 0.0f },

{ 0, 0, 255, 255, 1.0f, -0.2f, 0.0f }, // Quad #3
{ 255, 255, 0, 255, 2.0f, -0.2f, 0.0f },
{ 0, 255, 255, 255, 2.0f, 0.2f, 0.0f },
{ 255, 0, 255, 255, 1.0f, 0.2f, 0.0f }
};

Vertex g_quadStrip[] =
{
{ 255, 0, 0, 255, -0.5f,-1.5f, 0.0f },
{ 0, 255, 0, 255, 0.5f,-1.5f, 0.0f },
{ 0, 0, 255, 255, -0.2f,-0.5f, 0.0f },
{ 255, 255, 0, 255, 0.2f,-0.5f, 0.0f },
{ 255, 0, 255, 255, -0.5f, 0.5f, 0.0f },
{ 0, 255, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 0, 0, 255, -0.4f, 1.5f, 0.0f },
{ 0, 255, 0, 255, 0.4f, 1.5f, 0.0f },
};

Vertex g_polygon[] =
{
{ 255, 0, 0, 255, -0.3f,-1.5f, 0.0f },
{ 0, 255, 0, 255, 0.3f,-1.5f, 0.0f },
{ 0, 0, 255, 255, 0.5f, 0.5f, 0.0f },
{ 255, 255, 0, 255, 0.0f, 1.5f, 0.0f },
{ 255, 0, 255, 255, -0.5f, 0.5f, 0.0f }
};

class Tutorial2 :public CELL::Graphy::CELLWinApp
{
public:
Tutorial2(HINSTANCE hInstance)
:CELL::Graphy::CELLWinApp(hInstance)
,_primitiveType(GL_POINTS)
{
}
virtual void render()
{
do
{
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

/**
* 指明,要操作的矩阵是模型矩阵
*/
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glTranslatef( 0.0f, 0.0f, -5.0f );

switch( _primitiveType )
{
case GL_POINTS:
glInterleavedArrays( GL_C4UB_V3F, 0, g_points );
glDrawArrays( GL_POINTS, 0, 5 );
break;

case GL_LINES:
glInterleavedArrays( GL_C4UB_V3F, 0, g_lines );
glDrawArrays( GL_LINES, 0, 6 );
break;

case GL_LINE_STRIP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_lineStrip_and_lineLoop );
glDrawArrays( GL_LINE_STRIP, 0, 6 );
break;

case GL_LINE_LOOP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_lineStrip_and_lineLoop );
glDrawArrays( GL_LINE_LOOP, 0, 6 );
break;

case GL_TRIANGLES:
glInterleavedArrays( GL_C4UB_V3F, 0, g_triangles );
glDrawArrays( GL_TRIANGLES, 0, 6 );
break;

case GL_TRIANGLE_STRIP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_triangleStrip );
glDrawArrays( GL_TRIANGLE_STRIP, 0, 8 );
break;

case GL_TRIANGLE_FAN:
glInterleavedArrays( GL_C4UB_V3F, 0, g_triangleFan );
glDrawArrays( GL_TRIANGLE_FAN, 0, 6 );
break;

case GL_QUADS:
glInterleavedArrays( GL_C4UB_V3F, 0, g_quads );
glDrawArrays( GL_QUADS, 0, 12 );
break;

case GL_QUAD_STRIP:
glInterleavedArrays( GL_C4UB_V3F, 0, g_quadStrip );
glDrawArrays( GL_QUAD_STRIP, 0, 8 );
break;

case GL_POLYGON:
glInterleavedArrays( GL_C4UB_V3F, 0, g_polygon );
glDrawArrays( GL_POLYGON, 0, 5 );
break;

default:
break;
}

SwapBuffers( _hDC );
} while (false);
}

/**
* 生成投影矩阵
* 后面为了重用性,我们会写一个专门的matrix类,完成矩阵的一系列擦做
* 这个是很有必须要的,当你对Opengl了解的不断深入,你会发现,很多都是和数学有关的
*/
void perspective(float fovy,float aspect,float zNear,float zFar,float matrix[4][4])
{
assert(aspect != float(0));
assert(zFar != zNear);
#define PI 3.14159265358979323f

float rad = fovy * (PI / 180);

float halfFovy = tan(rad / float(2));
matrix[0][0] = float(1) / (aspect * halfFovy);
matrix[1][1] = float(1) / (halfFovy);
matrix[2][2] = -(zFar + zNear) / (zFar - zNear);
matrix[2][3] = -float(1);
matrix[3][2] = -(float(2) * zFar * zNear) / (zFar - zNear);
#undef PI
}
virtual void onInit()
{
/**
* 调用父类的函数。
*/
CELL::Graphy::CELLWinApp::onInit();
/**
* 设置Opengl的投影方式,改例子里面,我们使用正交投影
* OpenGL的投影方式有两种(我知道的):正交,和透视,有兴趣的可以google下
* 这里采用的窗口坐标系,与Windows窗口坐标一直,左上角为 0,0,右下角为 _winWidth,_winHeight
* 这种投影下绘制出来的物体没有三维感
*/
//glOrtho(0,_winWidth,_winHeight,0,1,-1);
//! 修改投影方式-透视投影,
//! 指定我们要进行操作的矩阵,OpenGL是一个状态机,所以要操作那一个状态的时候,需要进行切换
//! 下面的这句话就是切换到投影矩阵上
//! gluPerspective细节实现,参照下面的网址:http://www.opengl.org/sdk/docs/man2/xhtml/gluPerspective.xml

glMatrixMode( GL_PROJECTION );
#if 0

glLoadIdentity();
gluPerspective( 45.0, (GLdouble)_winWidth / (GLdouble)_winHeight, 0.1, 100.0);

float mat[4][4];
glGetFloatv(GL_PROJECTION_MATRIX,(float*)mat);

#else
//! 这里我们也可以自己按照Opengl的投影方式生成一个投影矩阵,
//! 然后将投影矩阵给OpenGL
GLfloat matrix[4][4] =
{
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0
};
perspective(45.0f, (GLfloat)_winWidth / (GLfloat)_winHeight, 0.1f, 100.0f,matrix);
glLoadMatrixf((float*)matrix);
#endif
glClearColor(0,0,0,1);
}

virtual int events(unsigned msg, unsigned wParam, unsigned lParam)
{
switch(msg)
{
case WM_KEYDOWN:
{
if (wParam == 'S' ||wParam == 'S')
{
_primitiveType += 1;
if (_primitiveType >=GL_POLYGON )
{
_primitiveType = 0;
}
}
}
break;
}
return __super::events(msg,wParam,lParam);
}
protected:
unsigned _primitiveType;
};

int CALLBACK _tWinMain(
HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPTSTR lpCmdLine,
int nShowCmd
)
{

Tutorial2 winApp(hInstance);
winApp.start(640,480);
return 0;
}

OpenGL3-绘制各种图元绘制的更多相关文章

  1. 12-UIKit(View绘制、绘制曲线、绘制文字、贴图)

    目录: 1. View绘制 2. 绘制曲线 3. 绘制文字 4. 贴图 回到顶部 1. View绘制 1.1 做出自己的视图对象 TRCell : UITableViewCell : UIView U ...

  2. ArcGis For Silverlight API,地图显示Gis,绘制点,线,绘制图等--绘制点、线、圆,显示提示信息

    ArcGis For Silverlight API,地图显示Gis,绘制点,线,绘制图等--绘制点.线.圆,显示提示信息 /// <summary> /// 绘制界面上的点和线 ///  ...

  3. Unity3D研究院之游戏对象的访问绘制线与绘制面详解(十七)

    一眨眼学习Unity3D 也有一段时间了,基本已经拿下了这套游戏引擎,回过头来想想以前写的RPG 游戏引擎,越来越发现以前写的就是垃圾.人果然是要不断学习与不断进步,好好学习,天天向上.哇咔咔- 加油 ...

  4. WebGL学习笔记二——绘制基本图元

    webGL的基本图元点.线.三角形 gl.drawArrays(mode, first,count) first,代表从第几个点开始绘制即顶点的起始位置 count,代表绘制的点的数量. mode,代 ...

  5. cocos2d-x 绘制基本图元

    转自:http://4137613.blog.51cto.com/4127613/754729 第一部分:基本图形绘制   cocos2dx封装了大量opengl函数,用于快速绘制基本图形,这些代码的 ...

  6. 【转】cocos2d-x学习笔记03:绘制基本图元

    第一部分:基本图形绘制 cocos2dx封装了大量opengl函数,用于快速绘制基本图形,这些代码的例子在,tests\DrawPrimitivesTest目录下 注意,该方法是重载node的draw ...

  7. unity绘制线和绘制面

    绘制线条代码,其实就是指定至少两个点,然后赋予贴图即可,不废话,上代码: using UnityEngine; using System.Collections; public class LineT ...

  8. html5 Canvas绘制时钟以及绘制运动的圆

    1.绘制时钟 <!-- js代码 --> <script type="text/javascript"> window.onload=function(){ ...

  9. IOS 绘制基本图形( 画圆、画线、画圆弧、绘制三角形、绘制四边形)

    // 当自定义view第一次显示出来的时候就会调用drawRect方法- (void)drawRect:(CGRect)rect { // 1.获取上下文 CGContextRef ctx = UIG ...

随机推荐

  1. 定义member【C++】cstddef中4个定义

    最近研究定义member,稍微总结一下,以后继续补充: size_t size_t corresponds to the integral data type returned by the lang ...

  2. Openfire服务器MySQL优化

    Openfire服务器MySQL优化: [root@iZ28g4ctd7tZ ~]# mysql -u root -p XXXXX mysql> show processlist; +----- ...

  3. URAL 1784 K - Rounders 找规律

    K - RoundersTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view. ...

  4. 用C#.NET实现电子邮件客户程序

    用C#.NET实现电子邮件客户程序 周华清 戴晟辉(东华理工学院计算机与通信系 江西 抚州 344000) [摘要]通过C#这种VisualSTudio.NET中新引入的面向对象且类型安全的编程语言, ...

  5. enum 在c中的使用

    假设一个变量你须要几种可能存在的值,那么就能够被定义成为枚举类型.之所以叫枚举就是说将变量或者叫对象可能存在的情况也能够说是可能的值一一例举出来.  举个样例来说明一吧,为了让大家更明确一点,比方一个 ...

  6. 使用C#通过Thrift访问HBase

    前言 因为项目需要要为客户程序提供C#.Net的HBase访问接口,而HBase并没有提供原生的.Net客户端接口,可以通过启动HBase的Thrift服务来提供多语言支持. Thrift介绍 环境 ...

  7. DataBase 之 表操作

    1:向表中添加字段 Alter table [表名] add [列名] 类型 2: 删除字段 Alter table [表名] drop column [列名] 3: 修改表中字段类型 (可以修改列的 ...

  8. MYSQL基础笔记(四)-数据基本操作

    数据操作 新增数据:两种方案. 1.方案一,给全表字段插入数据,不需要指定字段列表,要求数据的值出现的顺序必须与表中设计的字段出现的顺序一致.凡是非数值数据,到需要使用引号(建议使用单引号)包裹. i ...

  9. FineUploader 学习笔记

    FineUploader既是开源的又是收费的,这个没搞懂. 先看效果:

  10. 显示创建一个表的SQL语句

    显示创建数据库中包的语句,从而可以方便的对表的结构进行修改和复制(当然还有其他的方式) 显示表结构: 显示创建表语句: show create table tablename;