Danil decided to earn some money, so he had found a part-time job. The interview have went well, so now he is a light switcher.

Danil works in a rooted tree (undirected connected acyclic graph) with n vertices, vertex 1 is the root of the tree. There is a room in each vertex, light can be switched on or off in each room. Danil's duties include switching light in all rooms of the subtree of the vertex. It means that if light is switched on in some room of the subtree, he should switch it off. Otherwise, he should switch it on.

Unfortunately (or fortunately), Danil is very lazy. He knows that his boss is not going to personally check the work. Instead, he will send Danil tasks using Workforces personal messages.

There are two types of tasks:

pow v describes a task to switch lights in the subtree of vertex v.
get v describes a task to count the number of rooms in the subtree of v, in which the light is turned on. Danil should send the answer to his boss using Workforces messages.
A subtree of vertex v is a set of vertices for which the shortest path from them to the root passes through v. In particular, the vertex v is in the subtree of v.

Danil is not going to perform his duties. He asks you to write a program, which answers the boss instead of him.

Input
The first line contains a single integer n (1 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n - 1 space-separated integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the ancestor of vertex i.

The third line contains n space-separated integers t1, t2, ..., tn (0 ≤ ti ≤ 1), where ti is 1, if the light is turned on in vertex i and 0 otherwise.

The fourth line contains a single integer q (1 ≤ q ≤ 200 000) — the number of tasks.

The next q lines are get v or pow v (1 ≤ v ≤ n) — the tasks described above.

Output
For each task get v print the number of rooms in the subtree of v, in which the light is turned on.

Example
inputCopy
4
1 1 1
1 0 0 1
9
get 1
get 2
get 3
get 4
pow 1
get 1
get 2
get 3
get 4
outputCopy
2
0
0
1
2
1
1
0
Note

The tree before the task pow 1.

The tree after the task pow 1.

题意:给出一棵树初始的节点值,给出两种操作,一种为子树异或1,另一种为统计子树中一的个数

题解:  可以用dfs序+线段树解决,异或标记可以通过tag[x]^=1来进行传递,每次更改相当于将区间内所有的1改为0,所有的0改为1,这样相当于把sum改为size-sum,可以O(1)实现

代码如下:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; struct node
{
int l,r,lazy,sum;
} tr[]; vector<int> g[];
int id[],size[],c[],w[],tot; void push_up(int root)
{
tr[root].sum=tr[lson].sum+tr[rson].sum;
} void push_down(int root)
{
int mid=(tr[root].l+tr[root].r)>>;
tr[lson].sum=(mid-tr[root].l+)-tr[lson].sum;
tr[lson].lazy=^tr[lson].lazy;
tr[rson].sum=(tr[root].r-mid)-tr[rson].sum;
tr[rson].lazy=^tr[rson].lazy;
tr[root].lazy=;
} void build(int root,int l,int r)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
tr[root].sum=w[l];
return ;
}
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)>>;
build(lson,l,mid);
build(rson,mid+,r);
push_up(root);
} void update(int root,int l,int r,int val)
{
if(tr[root].l==l&&tr[root].r==r)
{
tr[root].sum=(tr[root].r-tr[root].l+)-tr[root].sum;
tr[root].lazy=tr[root].lazy^;
return ;
}
if(tr[root].lazy)
{
push_down(root);
}
int mid=(tr[root].l+tr[root].r)>>;
if(l>mid)
{
update(rson,l,r,val);
}
else
{
if(mid>=r)
{
update(lson,l,r,val);
}
else
{
update(lson,l,mid,val);
update(rson,mid+,r,val);
}
}
push_up(root);
} int query(int root,int l,int r)
{
if(tr[root].l==l&&tr[root].r==r)
{
return tr[root].sum;
}
if(tr[root].lazy)
{
push_down(root);
}
int mid=(tr[root].l+tr[root].r)>>;
if(mid<l)
{
return query(rson,l,r);
}
else
{
if(mid>=r)
{
return query(lson,l,r);
}
else
{
return query(lson,l,mid)+query(rson,mid+,r);
}
}
} void dfs(int now,int f)
{
id[now]=++tot;
w[tot]=c[now];
size[now]=;
for(int i=; i<g[now].size(); i++)
{
if(g[now][i]==f)
{
continue;
}
dfs(g[now][i],now);
size[now]+=size[g[now][i]];
}
} void sub_update(int u,int val)
{
update(,id[u],id[u]+size[u]-,val);
} int sub_query(int u)
{
return query(,id[u],id[u]+size[u]-);
} int main()
{
int n,m;
scanf("%d",&n);
for(int i=; i<=n; i++)
{
int to;
scanf("%d",&to);
g[to].push_back(i);
g[i].push_back(to);
}
for(int i=; i<=n; i++)
{
scanf("%d",&c[i]);
}
dfs(,);
build(,,n);
scanf("%d",&m);
char s[];
int val;
for(int i=; i<=m; i++)
{
scanf("\n%s %d",s,&val);
if(s[]=='g')
{
printf("%d\n",sub_query(val));
}
else
{
sub_update(val,);
}
}
}

CodeForces 877E Danil and a Part-time Job(dfs序+线段树)的更多相关文章

  1. Codeforces 877E Danil and a Part-time Job(dfs序 + 线段树)

    题目链接   Danil and a Part-time Job 题意    给出一系列询问或者修改操作 $pow$ $x$表示把以$x$为根的子树的所有结点的状态取反($0$变$1$,$1$变$0$ ...

  2. Codeforces 877E - Danil and a Part-time Job(dfs序+线段树)

    877E - Danil and a Part-time Job 思路:dfs序+线段树 dfs序:http://blog.csdn.net/qq_24489717/article/details/5 ...

  3. Codeforces Round #225 (Div. 2) E. Propagating tree dfs序+-线段树

    题目链接:点击传送 E. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

  5. Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)

    A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  6. Codeforces 838B - Diverging Directions - [DFS序+线段树]

    题目链接:http://codeforces.com/problemset/problem/838/B You are given a directed weighted graph with n n ...

  7. Educational Codeforces Round 6 E dfs序+线段树

    题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...

  8. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  9. Codeforces 620E New Year Tree(DFS序 + 线段树)

    题目大概说给一棵树,树上结点都有颜色(1到60),进行下面两个操作:把某结点为根的子树染成某一颜色.询问某结点为根的子树有多少种颜色. 子树,显然DFS序,把子树结点映射到连续的区间.而注意到颜色60 ...

随机推荐

  1. 关于setTimeout的一个逻辑题

    function hh() { for (var i = 1; i <=5; i++) { setTimeout(function(){ console.log(i); },100) } con ...

  2. ISIS与OSPF的区别与联系

    共同之处: 1 都是链路状态路由协议,都要求区域内的路由器交换链路状态信息,链路状态信息被收集到链路状态数据库中 2 都是用了一种实现路由选择信息交换相似机制 3 都在广播网络中选择指定路由器来控制扩 ...

  3. pycharm多行代码缩进、左移

    在使用pycharm时,经常会需要多行代码同时缩进.左移,pycharm提供了快捷方式 1.pycharm使多行代码同时缩进 鼠标选中多行代码后,按下Tab键,一次缩进四个字符 2.pycharm使多 ...

  4. python打造XslGenerator

    0x00前言 今天加载了Demon哥分享的RSS.其中有一篇是三好学生讲的: 在仔细越读这篇文章后,我懂得了里面的一些骚操作,所以有了以下的 脚本. 0x001代码 import optparse i ...

  5. KEGG Pathway Anonatation

    转载于 Original 2017-06-20 liuhui 生信百科 KEGG 数据库中,把功能相似的蛋白质归为同一组,然后标上 KO 号.通过相似性比对,可以为未知功能的蛋白序列注释上 KO 号. ...

  6. jquery制作滚动条到一定位置触发

    $(function(){ var nav=$(".nav"); //得到导航对象 var win=$(window); //得到窗口对象 var sc=$(document);/ ...

  7. Python 小知识点(8)-- __new__

    第一段代码如下: class Foo(object): def __init__(self,name): self.name = name print("Foo __init__" ...

  8. 关于jquery.noConflict()的学习记录

    今天无意中看到了jquery.noConfict()的实现方法 代码如下: var // Map over jQuery in case of overwrite _jQuery = window.j ...

  9. Python实践练习目录

    缘由 做中学才是最好的方法,通过这些项目来加强自己的Python掌握程度. 原则 成体系地学,不搞"题海战术" 通所有不如精一物,精一物方可通所有 走心学,忌浮躁 项目列表 字符串 ...

  10. 左侧倒换菜单 frameset 已过时

    <!doctype html><html><frameset cols="200,*"> <frame src="left.ht ...