本文包括2部分内容:“ASCII,Unicode和UTF-8” 和 “Big Endian和Little Endian”。

第1部分 ASCII,Unicode和UTF-8 介绍

1. ASCII码

我们知道,在计算机内部,所有的信息最终都表示为一个二进制的字符串。每一个二进 制位(bit)有0和1两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte)。也就是说,一个字节一共可以用来表示256 种不同的状态,每一个状态对应一个符号,就是256个符号,从0000000到11111111。

上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为ASCII码,一直沿用至今。

ASCII码一共规定了128个字符的编码,比如空格"SPACE"是32(二进制00100000),大写的字母A是65(二进制01000001)。这128个符号(包括32个不能打印出来的控制符号),只占用了一个字节的后面7位,最前面的1位统一规定为0。

2、非ASCII编码

英语用128个符号编码就够了,但是用来表示其他语言,128个符号是不够的。比 如,在法语中,字母上方有注音符号,它就无法用ASCII码表示。于是,一些欧洲国家就决定,利用字节中闲置的最高位编入新的符号。比如,法语中的é的编 码为130(二进制10000010)。这样一来,这些欧洲国家使用的编码体系,可以表示最多256个符号。

但是,这里又出现了新的问题。不同的国家有不同的字母,因此,哪怕它们都使用 256个符号的编码方式,代表的字母却不一样。比如,130在法语编码中代表了é,在希伯来语编码中却代表了字母Gimel (ג),在俄语编码中又会代表另一个符号。但是不管怎样,所有这些编码方式中,0--127表示的符号是一样的,不一样的只是128--255的这一段。

至于亚洲国家的文字,使用的符号就更多了,汉字就多达10万左右。一个字节只能表 示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。比如,简体中文常见的编码方式是GB2312,使用两个字节表示一个汉字,所以理论上最 多可以表示256x256=65536个符号。

中文编码的问题需要专文讨论,这篇笔记不涉及。这里只指出,虽然都是用多个字节表示一个符号,但是GB类的汉字编码与后文的Unicode和UTF-8是毫无关系的。

3.Unicode

正如上一节所说,世界上存在着多种编码方式,同一个二进制数字可以被解释成不同的符号。因此,要想打开一个文本文件,就必须知道它的编码方式,否则用错误的编码方式解读,就会出现乱码。为什么电子邮件常常出现乱码?就是因为发信人和收信人使用的编码方式不一样。

可以想象,如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是Unicode,就像它的名字都表示的,这是一种所有符号的编码。

Unicode当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样,比如,U+0639表示阿拉伯字母Ain,U+0041表示英语的大写字母A,U+4E25表示汉字"严"。具体的符号对应表,可以查询unicode.org,或者专门的汉字对应表

4. Unicode的问题

需要注意的是,Unicode只是一个符号集,它只规定了符号的二进制代码,却没有规定这个二进制代码应该如何存储。

比如,汉字"严"的unicode是十六进制数4E25,转换成二进制数足足有15位(100111000100101),也就是说这个符号的表示至少需要2个字节。表示其他更大的符号,可能需要3个字节或者4个字节,甚至更多。

这里就有两个严重的问题,第一个问题是,如何才能区别Unicode和 ASCII?计算机怎么知道三个字节表示一个符号,而不是分别表示三个符号呢?第二个问题是,我们已经知道,英文字母只用一个字节表示就够了,如果 Unicode统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0,这对于存储来说是极大的浪费,文本文件的大小会因 此大出二三倍,这是无法接受的。

它们造成的结果是:1)出现了Unicode的多种存储方式,也就是说有许多种不同的二进制格式,可以用来表示Unicode。2)Unicode在很长一段时间内无法推广,直到互联网的出现。

5.UTF-8

互联网的普及,强烈要求出现一种统一的编码方式。UTF-8就是在互联网上使用最 广的一种Unicode的实现方式。其他实现方式还包括UTF-16(字符用两个字节或四个字节表示)和UTF-32(字符用四个字节表示),不过在互联 网上基本不用。重复一遍,这里的关系是,UTF-8是Unicode的实现方式之一。

UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度。

UTF-8的编码规则很简单,只有二条:

1)对于单字节的符号,字节的第一位设为0,后面7位为这个符号的unicode码。因此对于英语字母,UTF-8编码和ASCII码是相同的。

2)对于n字节的符号(n>1),第一个字节的前n位都设为1,第n+1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。

下表总结了编码规则,字母x表示可用编码的位。

Unicode符号范围          |   UTF-8编码方式
(十六进制)                      | (二进制)
--------------------+---------------------------------------------
0000 0000-0000 007F   | 0xxxxxxx
0000 0080-0000 07FF   | 110xxxxx 10xxxxxx
0000 0800-0000 FFFF  | 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-0010 FFFF  | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

跟据上表,解读UTF-8编码非常简单。如果一个字节的第一位是0,则这个字节单独就是一个字符;如果第一位是1,则连续有多少个1,就表示当前字符占用多少个字节。

下面,还是以汉字"严"为例,演示如何实现UTF-8编码。

已知"严"的unicode是4E25(100111000100101),根据
上表,可以发现4E25处在第三行的范围内(0000 0800-0000
FFFF),因此"严"的UTF-8编码需要三个字节,即格式是"1110xxxx 10xxxxxx
10xxxxxx"。然后,从"严"的最后一个二进制位开始,依次从后向前填入格式中的x,多出的位补0。这样就得到了,"严"的UTF-8编码
是"11100100 10111000 10100101",转换成十六进制就是E4B8A5。

第2部分 big endian 和 little endian介绍

big endian(大端法)是指低地址存放最高有效字节(MSB),而little endian(小端法)则是低地址存放最低有效字节(LSB)。

通过文字理解可能比较抽象,下面用图像加以说明。下图是“0x12345678在两种字节序中的存储顺序”:

Big Endian

  1. 低地址 高地址
  2. ----------------------------------------->
  3. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  4. | | | | |
  5. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

说明:上面是0x12345678对应big endian的存储方式。

(01) 0x12345678是int整数,它共有4个字节:分别是0x12, 0x34, 0x56, 0x78;其中,0x12是最高有效字节,0x78是最低有效字节。int占4个字节,这个是常识;0x12是十六进制的表示方式,0x12对应的二进制是00010010,正好是8位,也就是1个字节;因此0x12, 0x34, 0x56, 0x78共是4个字节。

(02) big endian是将最高有效字节存储在低地址中,因为就是0x12(最高有效地址),存在低地址;那么,从低往高地址依次存放0x12  -->  0x34 -->  0x56  --> 0x78。也就是上面图像中的存储方式。

Little Endian

  1. 低地址 高地址
  2. ----------------------------------------->
  3. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  4. | | | | |
  5. +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

说明:上面是0x12345678对应little endian的存储方式。

(01) 0x12345678是int整数,它共有4个字节:分别是0x12, 0x34, 0x56, 0x78;其中,0x12是最高有效字节,0x78是最低有效字节

(02) little endian是将最低有效字节存储在低地址中,因为就是0x78(最低有效地址),存在低地址;从低往高地址依次存放0x78 --> 0x56  -->  0x34 -->  0x12。也就是上面图像中的存储方式。

big endian 和 little endian判断方式

下面,我们通过示例程序来判断CPU是大端存储还是小端存储。
源码如下(endian.c):

  1. void main() {
  2. int i = 0x12345678;
  3. char* pc = (char*)&i;
  4. if (*pc == 0x12) {
  5. printf("Big Endian\n");
  6. } else if (*pc == 0x78) {
  7. printf("Little Endian\n");
  8. }
  9. }

我在ubuntu12.04系统下,运行的结果是“Little Endian”。


参考文献:字符编码笔记:ASCII,Unicode和UTF-8

更多内容:

01. skywang的博客目录(持续更新中...)

02. Java 集合系列目录(Category) 

字符编码(ASCII,Unicode和UTF-8) 和 大小端(zz)的更多相关文章

  1. 字符编码 ASCII,Unicode和UTF-8的关系

    转自:http://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143166410626 ...

  2. 字符编码 ASCII unicode UTF-8

    字符串也是一种数据类型,但是,字符串比较特殊的是还有一个编码问题. 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机在设计时采用8个比特(bit)作为一个字节(b ...

  3. 彻底搞清楚字符编码: ASCII, ISO_8859, GB2312,UCS, Unicode, Utf-8

    彻底搞清楚字符编码: ASCII, ISO_8859, GB2312,UCS, Unicode, U 1.ASCII: 0-127(128-255未使用),美国标准 2.IS0-8859-1(lati ...

  4. 字符编码(ASCII,Unicode和UTF-8) 和 大小端

    本文包括2部分内容:“ASCII,Unicode和UTF-8” 和 “Big Endian和Little Endian”. 第1部分 ASCII,Unicode和UTF-8 介绍 1. ASCII码 ...

  5. 字符编码 ASCII,Unicode 和 UTF-8 概念扫盲

    今天中午,我突然想搞清楚Unicode和UTF-8之间的关系,于是就开始在网上查资料. 结果,这个问题比我想象的复杂,从午饭后一直看到晚上9点,才算初步搞清楚. 下面就是我的笔记,主要用来整理自己的思 ...

  6. 字符编码 ASCII、Unicode和UTF-8的关系

    摘抄自廖雪峰 教程 字符编码 我们已经讲过了,字符串也是一种数据类型,但是,字符串比较特殊的是还有一个编码问题. 因为计算机只能处理数字,如果要处理文本,就必须先把文本转换为数字才能处理.最早的计算机 ...

  7. 字符编码ASCII,Unicode 和 UTF-8

    一直对编码的概念很模糊,今天抽空突然想了解下,就找到了这个文章,看完真的豁然开朗,必须感谢阮一峰先生. 一.ASCII 码 我们知道,计算机内部,所有信息最终都是一个二进制值.每一个二进制位(bit) ...

  8. Java 字符编码 ASCII、Unicode、UTF-8、代码点和代码单元

    1 ASCII码 统一规定英语字符与二进制位之间的关系.ASCII码一共规定了128个字符的编码.例如,空格“SPACE”是32(二进制00100000),大写字母A是65(二进制01000001). ...

  9. 字符编码ASCII、Unicode、GB

    计算机的存储都是二进制的,那么我们平时看到的各种字符都需要通过按照一定的格式转换成为二进制才能在被计算机识别与处理.这个过程便成为编码.常见的编码方式有ASCII.Unicode.GB2312等. 1 ...

随机推荐

  1. Python 脚本编程及国际化

    在前一篇博客文章 <使用 Python 编写脚本并发布> 中,我介绍了如何使用 Python 进行脚本编程,说实话这是我在尝试 Python 进行网站和网络编程之后首次使用 Python ...

  2. 树论讲解——最近公共祖先(lca)

    最近公共祖先?! 有人肯定要问:什么是最近公共祖先???!! 好那我们现在就来说说什么是最近公共祖先吧! 最近公共祖先有一个好听的名字叫——lca 这是一种算法,这个算法基于并查集和深度优先搜索.算法 ...

  3. struts2框架的大致处理流程

    1,浏览器发送请求,例如请求 /mypage.action /report/myreport.pdf等. 2,核心控制器FilterDispatcher根据请求决定调用合适的Action. 3,Web ...

  4. 【BZOJ 2006】2006: [NOI2010]超级钢琴(RMQ+优先队列)

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2792  Solved: 1388 Description 小 ...

  5. SQL Server附加数据库提示“版本为661,无法打开,支持655版本……”

    在我们使用别人导出的数据库的时候,有时候我们会通过附加数据库的方法,把别人导出的数据库附加到我们的电脑中,这时,或许你会遇到这种问题,附加时,提示版本为XXX,无法打开,支持AAA版本. 这是怎么回事 ...

  6. HNOI2012永无乡

    fhq treap+启发式合并,将小的合并到大的上面,复杂度NlogN. 最好的一点是通过dfs将一个子树内的元素转到另一个元素上. By:大奕哥 #include<bits/stdc++.h& ...

  7. CodeForces - 1009D Relatively Prime Graph

    题面在这里! 直接暴力找点对就行了,可以证明gcd=1是比较密集的,所以复杂度略大于 O(N log N) #include<bits/stdc++.h> #define ll long ...

  8. ElasticSearch学习笔记--2、ES相关配置

    1.配置文件 ES的配置文件位置:config/elasticsearch.yml可以直接搜索elasticsearch.yml 2.配置远程api访问 network.host: 192.168.1 ...

  9. java23种设计模式之一: 单例模式(Singleton Pattern)

    单例模式(Singleton Pattern)是设计模式中比较常用的一种,下面来总结单例模式的知识,包括: 1.理解什么是单例模式.单例模式有什么优点/缺点.单例模式的应用场景: 2.再来看看Java ...

  10. 【洛谷】P1196 [NOI2002]银河英雄传说【带权并查集】

    P1196 [NOI2002]银河英雄传说 题目描述 公元五八○一年,地球居民迁至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的 ...