51nod1031 骨牌覆盖 组合数学
不难发现,只有$1 * 2, 2 * 2$两种方法
因此,设$f[i]$表示填满$1 - i$的方案数
那么有$f[i] = f[i - 1] + f[i - 2]$,其实就是斐波那契数列....
复杂度$O(n)$
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; #define ri register int
#define mod 1000000007 int n;
int f[]; int main() {
cin >> n;
f[] = ; f[] = ;
for(ri i = ; i <= n; i ++)
f[i] = (f[i - ] + f[i - ]) % mod;
printf("%d\n", f[n]);
return ;
}
51nod1031 骨牌覆盖 组合数学的更多相关文章
- 随便玩玩系列之一:SPOJ-RNG+51nod 算法马拉松17F+51nod 1034 骨牌覆盖v3
先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假 ...
- hiho #1151 : 骨牌覆盖问题·二 (递推,数论)
#1151 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
- hiho42 : 骨牌覆盖问题·二
描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定, ...
- hiho41 : 骨牌覆盖问题·一
原问题:骨牌覆盖问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的 ...
- hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...
- 1007 正整数分组 1010 只包含因子2 3 5的数 1014 X^2 Mod P 1024 矩阵中不重复的元素 1031 骨牌覆盖
1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. Input 第1行:一个 ...
- 【hdu6185】Covering(骨牌覆盖)
2017ACM/ICPC广西邀请赛-重现赛1004Covering 题意 n*4的格子,用1*2和2*1的砖块覆盖.问方案数(mod 1e9+7).(n不超过1e9) 题解 递推了个式子然后错位相减. ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
随机推荐
- laravel中form表单,ajax传值没反应
laravel中form表单,ajax传值没反应时,可能是令牌有问题. form中添加: {{csrf_token()}} ajax中添加: data: {'page': page, '_token' ...
- flex图片布局
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>f ...
- 47、Python面向对象中的继承有什么特点?
继承的优点: 1.建造系统中的类,避免重复操作. 2.新类经常是基于已经存在的类,这样就可以提升代码的复用程度. 继承的特点: 1.在继承中基类的构造(__init__()方法)不会被自动调用,它需要 ...
- 自定义 feign 反序列化时间字符格式
参考 : https://blog.csdn.net/forezp/article/details/73480304 feign client 默认配置类:默认的配置类为FeignClientsCon ...
- python基础之常用的高阶函数
前言 高阶函数指的是能接收函数作为参数的函数或类:python中有一些内置的高阶函数,在某些场合使用可以提高代码的效率. map() map函数可以把一个迭代对象转换成另一个可迭代对象,不过在pyth ...
- 64_s2
sipwitch-1.9.15-3.fc26.x86_64.rpm 13-Feb-2017 09:19 162822 sipwitch-cgi-1.9.15-3.fc26.x86_64.rpm 13- ...
- JAVA 之 Tomcat知识框架【转】
一.Tomcat服务器(很熟悉) 1.Web开发概述 javaSE: javaEE:13种 javaME: JavaEE规范: 13种技术的总称.Servlet/Jsp JDBC JNDI JTA.. ...
- HDU 5936 朋友
题意为给出一棵n个节点的树,这棵树的每条边有一个权值,这个权值只可能是0或1. 在一局游戏开始时,会确定一个节点作为根. 当一方操作时,他们需要先选择一个不为根的点,满足该点到其父亲的边权为1; 然后 ...
- learnyounode 题解
//第三题 var fs =require('fs')var path=process.argv[2]fs.readFile(path,function(err,data){ var lines=da ...
- u-boot启动第二阶段以及界面命令分析
u-boot第一阶段完成了一些平台相关的硬件的配置,第一阶段所做的事情也是为第二阶段的准备,我们知道在第一阶段最后时搭建好C运行环境,之后调用了start_armboot(),那么很显然第二阶段从st ...