bzoj 1008 组合计数
正难则反
前面定后面就定->枚举开头
/**************************************************************
Problem: 1008
User: idy002
Language: C++
Result: Accepted
Time:0 ms
Memory:804 kb
****************************************************************/ #include <cstdio>
#define M 100003 typedef long long lng; lng n, m; lng mpow( lng a, lng b ) {
a %= M;
lng rt;
for( rt=; b; b>>=,a=(a*a)%M )
if( b& ) rt=(rt*a)%M;
return rt;
} int main() {
scanf( "%lld%lld", &m, &n );
lng ans = mpow( m, n ) - ((m%M)*(mpow( m-, n- )%M))%M;
ans = (ans%M+M)%M;
printf( "%lld\n", ans );
}
bzoj 1008 组合计数的更多相关文章
- [Bzoj1008][HNOI2008]越狱(组合计数)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 组合计数的简单题,可能越狱的方案数等于总方案数-不可能越狱的方案数,则: 总方案数 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
随机推荐
- 6.MySQL简介
MySQL简介 ·点击查看MySQL官方网站 ·MySQL是一个关系型数据库管理系统,由瑞典MySQLAB公司开发,后来被Sun公司收购,Sun公司后来又被Oracle公司收购,目前属于facle旗下 ...
- 5、Linux操作系统介绍
1操作系统的作用·是现代计算机系统中最基本和最重要的系统软件·是配置在计算机硬件上的第一层软件,是对硬件系统的首次扩展·主要作用是管理好硬件设备,并为用户和应用程序提供一个简单的接口,以便于使用·而其 ...
- 深入理解Spring系列之一:开篇
转载 https://mp.weixin.qq.com/s?__biz=MzI0NjUxNTY5Nw==&mid=2247483810&idx=1&sn=a2df14fdb63 ...
- (5)剑指Offer之栈变队列和栈的压入、弹出序列
一 用两个栈实现队列 题目描述: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 问题分析: 先来回顾一下栈和队列的基本特点: 栈:后进先出(LIFO) 队列: ...
- docker之设置开机自启动(二)
docker的自启动 通过sysv-rc-conf等管理 启动脚本 # docker.service #!/bin/sh sudo systemctl enable docker sudo syste ...
- flask插件系列之flask_celery异步任务神器
现在继续学习在集成的框架中如何使用celery. 在Flask中使用celery 在Flask中集成celery需要做到两点: 创建celery的实例对象的名字必须是flask应用程序app的名字,否 ...
- http状态码说明
在学习网页设计的时候都应该知道状态码,但我们常见的状态码都是200,404,下面介绍其他的状态值 1开头的http状态码表示临时响应并需要请求者继续执行操作的状态代码. 100 (继续) 请求者应 ...
- sea.js中的checkbox批量操作
<table width="100%" border="0" cellspacing="0" cellpadding="0& ...
- java程序改错题(常见)
最近跑校招,做了一套java的笔试题. abstract class Name { private String name; public abstract boolean isStupidName( ...
- CSU 1412 Line and Circles
原题链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1412 题目要求判断是否有一条直线可以穿过所有的圆. 做法:把所有圆心做一次凸包,然后判断 ...