BZOJ2095 POI2010 Bridges


Description

YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个岛。现在YYD想骑单车从小岛1出发,骑过每一座桥,到达每一个小岛,然后回到小岛1。霸中同学为了让YYD减肥成功,召唤了大风,由于是海上,风变得十分大,经过每一座桥都有不可避免的风阻碍YYD,YYD十分ddt,于是用泡芙贿赂了你,希望你能帮他找出一条承受的最大风力最小的路线。

Input

输入:第一行为两个用空格隔开的整数n(2<=n<=1000),m(1<=m<=2000),接下来读入m行由空格隔开的4个整数a,b(1<=a,b<=n,a<>b),c,d(1<=c,d<=1000),表示第i+1行第i座桥连接小岛a和b,从a到b承受的风力为c,从b到a承受的风力为d。

Output

输出:如果无法完成减肥计划,则输出NIE,否则第一行输出承受风力的最大值(要使它最小)

Sample Input

4 4

1 2 2 4

2 3 3 4

3 4 4 4

4 1 5 4

Sample Output

4


首先看到最大风力最小就知道是二分

然后我们把图建出来发现是有些边有向,有些边无向,所以就是混合图欧拉回路

有关混合图欧拉回路的求解,可以看一看这篇文章



#include<bits/stdc++.h>
using namespace std;
#define N 2010
#define INF 0x3f3f3f3f
struct Edge{int u,v,cap,flow;};
struct Dinic{
int s,t,d[N];bool vis[N];
vector<int> G[N];
vector<Edge> E;
void init(int _n){
E.clear();
for(int i=0;i<=_n;i++)G[i].clear();
}
void add(int u,int v,int w){
E.push_back((Edge){u,v,w,0});
E.push_back((Edge){v,u,0,0});
int m=E.size();
G[u].push_back(m-2);
G[v].push_back(m-1);
}
bool bfs(){
static queue<int> q;
memset(vis,0,sizeof(vis));
q.push(s);d[s]=0;vis[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=0;i<G[u].size();i++){
Edge e=E[G[u][i]];
if(!vis[e.v]&&e.cap>e.flow){
vis[e.v]=1;
d[e.v]=d[e.u]+1;
q.push(e.v);
}
}
}
return vis[t];
}
int dfs(int u,int a){
if(!a||u==t)return a;
int flow=0;
for(int i=0;i<G[u].size();i++){
Edge &e=E[G[u][i]];
if(d[e.v]!=d[u]+1)continue;
int f=dfs(e.v,min(a,e.cap-e.flow));
e.flow+=f;
E[G[u][i]^1].flow-=f;
flow+=f;
a-=f;
if(!a)break;
}
if(!flow)d[u]=0;
return flow;
}
int Maxflow(){
int flow=0;
while(bfs())flow+=dfs(s,INF);
return flow;
}
}dinic;
int n,m;
int U[N],V[N],C[N],D[N];
int in[N],out[N];
bool check(int val){
for(int i=1;i<=n;i++)in[i]=out[i]=0;
dinic.init(n+1);
int sum=0;
for(int i=1;i<=m;i++){
if(C[i]<=val)out[U[i]]++,in[V[i]]++;
if(D[i]<=val)dinic.add(V[i],U[i],1);
}
for(int i=1;i<=n;i++)if(abs(in[i]-out[i])&1)return 0;
for(int i=1;i<=n;i++){
int tmp=in[i]-out[i];
if(tmp>0)sum+=tmp>>1;
if(tmp>0)dinic.add(0,i,tmp>>1);
if(tmp<0)dinic.add(i,n+1,(-tmp)>>1);
}
return dinic.Maxflow()==sum;
}
int main(){
scanf("%d%d",&n,&m);
dinic.s=0;dinic.t=n+1;
int L=INF,R=0,ans=-1;
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&U[i],&V[i],&C[i],&D[i]);
if(C[i]>D[i])swap(C[i],D[i]),swap(U[i],V[i]);
L=min(L,C[i]);
R=max(R,D[i]);
}
while(L<=R){
int mid=(L+R)>>1;
if(check(mid))R=mid-1,ans=mid;
else L=mid+1;
}
if(ans==-1)printf("NIE");
else printf("%d",ans);
return 0;
}

BZOJ2095 POI2010 Bridges 【二分+混合图欧拉回路】的更多相关文章

  1. [BZOJ2095][Poi2010]Bridges 二分+网络流

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1187  Solved: 408[Submit][Sta ...

  2. 【BZOJ-2095】Bridge 最大流 + 混合图欧拉回路 + 二分

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 604  Solved: 218[Submit][Stat ...

  3. bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]

    2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...

  4. BZOJ2095 [Poi2010]Bridges

    首先二分答案...然后这张图变成了有一些有向边,有一些无向边 然后就是混合图欧拉回路的判断 我们知道如果是有向图,它存在欧拉回路的等价条件是所有点的出度等于入度 对于混合图...先不管有向边,把无向边 ...

  5. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  6. POJ 1637 混合图欧拉回路

    先来复习一下混合图欧拉回路:给定一张含有单向边和双向边的图,使得每一点的入度出度相同. 首先对于有向边来说,它能贡献的入度出度是确定的,我们不予考虑.对于无向图,它可以通过改变方向来改变两端点的出入度 ...

  7. poj1637Sightseeing tour(混合图欧拉回路)

    题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...

  8. poj1637 Sightseeing tour(混合图欧拉回路)

    题目链接 题意 给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路. 思路 这是一道混合图欧拉回路的模板题. 一张图要满足有欧拉回路,必须满足每个点的度数为偶数. ...

  9. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

随机推荐

  1. php调用mysql存储过程

    MYSQL存储过程 原文链接:http://blog.sina.com.cn/s/blog_52d20fbf0100ofd5.html 一.存储过程简介(mysql5.0以上支持) 我们常用的操作数据 ...

  2. MySQL安装的N种方式

    一.二进制包安装 1.)下载:在官网的下载页面下的服务器操作系统选择  Linux- Generic : 进制分发版的格式是:mysql-<版本>-<OS>-tar.gz 2. ...

  3. C++ 线程的创建、挂起、唤醒和结束 &&&& 利用waitForSingleObject 函数陷入死锁的问题解决

    最近在写一个CAN总线的上位机软件,利用CAN转USB的设备连到电脑上,进行数据的传输.在接收下位机发送的数据的时候采用的在线程中持续接收数据. 1.在连接设备的函数中,开启线程. ,CREATE_S ...

  4. Python编程

    1.pip的使用.安装 pip show 显示输出版本 pip -V 是否安装成功 pip --help 查看相关帮助

  5. 【转】正向代理vs反向代理

    正向代理 正向代理:是一个位于客户端和原始服务器(origin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原始服务器转交请求并将 ...

  6. bzoj1002: [FJOI2007]轮状病毒 生成树计数

    轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病毒的产生规 ...

  7. hdu3706单调队列

    很基础的单调队列 #include<map> #include<set> #include<cmath> #include<queue> #includ ...

  8. Pandas 时间序列数据绘制X轴主要刻度和次要刻度

    先上效果图吧(图中Tue表示周二): Pandas和matplotlib.dates都是使用matplotlib.units来定位刻度. matplotlib.dates可以方便的手动设置刻度,同时p ...

  9. 轮播图插件 SuperSlide2.1滑动门jQuery插件

    http://down.admin5.com/demo/code_pop/18/562/ SuperSlide2.1滑动门jQuery插件

  10. C++复习11.函数的高级特性

    C++ 函数的高级特性 20131002 C++函数增加了重载(override), inline, const, virtual四种机制,重载和内联机制既可以用于全局函数,也可以用于类的成员函数.c ...