【UOJ 179】 #179. 线性规划 (单纯形法)
补充那一列修改方法:
对于第i行:
$$xi=bi-\sum Aij*xj$$
$$=bi-\sum_{j!=e} Aij*xj-Aie*xe$$
Pivot后应该是: $$=bi-\sum_{j!=e} Aij*xj-Aie*xl$$
假设第l行已经算对转轴后的系数
则$$xl=bl-\sum Alj*xj$$
所以$$xi=bi-\sum_{j!=e} Aij*xj-Aie*(bl-\sum Alj*xj)$$
$$=bi-Aie*bl-\sum_{j!=e}(Aij-Aie*Alj)*xj-(0-Aie*Alj*xj)$$
观察变化:
可以看出,所有系数只要-Aie*Alj就好了的。因为Aie会在过程中变化,所以一开始先存起来,然后置为0。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<ctime>
using namespace std;
#define Maxn 25
const double eps=0.00000001,INF=1e15; int n,m; int id[Maxn*2];
double a[Maxn][Maxn];
//第一维是限制,B集合
//第二维是元素,N集合
//a[0][xx] -> c 目标函数系数
//a[xx][0] -> b 限制等式常数
//a[xx][yy] -> A 限制等式系数向量
//最大化 sigma(ci*xi),i属于N
//限制 xj=bj-sigma(aji*xi) ,j属于B double myabs(double x) {return x>0?x:-x;} void Pivot(int l,int e)
{
//转轴l和e
swap(id[n+l],id[e]);
double t=a[l][e];a[l][e]=1;
for(int j=0;j<=n;j++) a[l][j]/=t;
for(int i=0;i<=m;i++) if(i!=l&&myabs(a[i][e])>eps)
{
t=a[i][e];a[i][e]=0;
for(int j=0;j<=n;j++) a[i][j]-=a[l][j]*t;
}
} //初始化-辅助问题
bool init()
{
while(1)
{
int e=0,l=0;
for(int i=1;i<=m;i++) if(a[i][0]<-eps&&(!l||(rand()&1))) l=i;
if(!l) break;
for(int j=1;j<=n;j++) if(a[l][j]<-eps&&(!e||(rand()&1))) e=j;
if(!e) {printf("Infeasible\n");return 0;}
Pivot(l,e);
}
return 1;
} //最优化
bool simplex()
{
while(1)
{
int l=0,e=0;double mn=INF;
for(int j=1;j<=n;j++)
if(a[0][j]>eps) {e=j;break;}
if(!e) break;//如果目标变量c都小于0 找到答案
for(int i=1;i<=m;i++) if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)
mn=a[i][0]/a[i][e],l=i;//找a[i][0]/a[i][e]最小的i进行转轴
if(!l) {printf("Unbounded\n");return 0;}
//如果所有的a[i][e]都小于0,说明最优值正无穷
Pivot(l,e);
}
return 1;
} double ans[Maxn]; int main()
{
srand(time(0));
int t;
scanf("%d%d%d",&n,&m,&t);
for(int i=1;i<=n;i++) scanf("%lf",&a[0][i]);
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++) scanf("%lf",&a[i][j]);
scanf("%lf",&a[i][0]);
}
for(int i=1;i<=n;i++) id[i]=i;
if(init()&&simplex())
{
printf("%.8lf\n",-a[0][0]);
if(t)
{
for(int i=1;i<=m;i++) ans[id[n+i]]=a[i][0];
for(int i=1;i<=n;i++) printf("%.8lf ",ans[i]);
}
}
return 0;
}
2017-03-14 21:01:07
【UOJ 179】 #179. 线性规划 (单纯形法)的更多相关文章
- 【UOJ #179】线性规划 单纯形模板
http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...
- 【UOJ#179】线性规划 单纯形
题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...
- bzoj3118: Orz the MST(线性规划+单纯形法)
传送门 不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值 对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边 设其中一条边为\ ...
- bzoj3265: 志愿者招募加强版(线性规划+单纯形法)
传送门 鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了-- 就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\( ...
- Oracle汉字转拼音package
--函数GetHzFullPY(string)用于获取汉字字符串的拼音 --select GetHzFullPY('中华人民共和国') from dual; --返回:ZhongHuaRenMinGo ...
- 通过PowerShell获取Windows系统密码Hash
当你拿到了系统控制权之后如何才能更长的时间内控制已经拿到这台机器呢?作为白帽子,已经在对手防线上撕开一个口子,如果你需要进一步扩大战果,你首先需要做的就是潜伏下来,收集更多的信息便于你判断,便于有更大 ...
- [模仿][JS]新浪财经7*24直播
使用新浪财经7*24直播的数据 简单的做一个山寨品 在线地址:[痛苦啊,有GFW,却没有vpn,往heroku上传浪费了好多时间...] http://wangxinsheng.herokuapp.c ...
- 【bzoj1061】 Noi2008—志愿者招募
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接) 题意 给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l, ...
- BZOJ3118 : Orz the MST
对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...
随机推荐
- 如何发布一个自定义Node.js模块到NPM(详细步骤,附Git使用方法)
咱们闲话不多说,直接开始! 由于我从没有使用过MAC,所以我不保证本文中介绍的操作与MAC一致. 文章开始我先假定各位已经在window全局安装了Node.js,下面开始进行详细步骤介绍: 本文本着, ...
- [linux]安装code::blocks
1.安装基本编译环境 $sudo apt-get install build-essential $sudo apt-get install gdb 2.安装codeblock $sudo apt-g ...
- $this->success()传值不完整
public function manager_doExport() { $search=$_POST['search']; //前台输入2017-12-1,即,$search['starttime' ...
- 天梯赛 L2-005 集合相似度 (set容器)
给定两个整数集合,它们的相似度定义为:Nc/Nt*100%.其中Nc是两个集合都有的不相等整数的个数,Nt是两个集合一共有的不相等整数的个数.你的任务就是计算任意一对给定集合的相似度. 输入格式: 输 ...
- 机器学习-kNN-数据归一化
一.为什么需要数据归一化 不同数据之间因为单位不同,导致数值差距十分大,容易导致预测结果被某项数据主导,所以需要进行数据的归一化. 解决方案:将所有数据映射到同一尺度 二.最值归一化 normaliz ...
- 好消息! 不用再羡慕Python有jupyter 我R也有Notebook了【附演示视频】
熟悉python的朋友可能知道jupyter notebook.它是一个Web应用程序,允许你创建和共享代码,方程,可视化和说明性文本文档.现在,我们可以在RStudio中实现R Notebook的功 ...
- weblogic性能监控
1.
- perl6 Socket: 发送HTTP请求
sub MAIN(Str $host,Str $path, Int $port) { my $send = "GET $path HTTP/1.1\r\nHost: $host\r\n\r\ ...
- python 并发爬虫的快感
import time from tomorrow import threads from requests_html import HTMLSession session=HTMLSession() ...
- 安装完ODTwithODAC112012,出现ORA-12560:TNS:协议适配器错误
参考:http://blog.csdn.net/tan_yixiu/article/details/6762357 操作系统:windows2008 Enterprise 64位 开发工具:VS201 ...