For example there is a staricase

      N = 3

| ---|

     |---|    |

|---|            |

---|                  |

There is N = 3 staricase, for each step, you can either take {1 or 2} step at a time. So asking how many ways you can get on N = 3 step:

Answer: should be 3 ways: {1,1,1,}, {1,2}, {2,1}.

Now assue N=0, there is only 1 way, writing a function which takes number N and return the number of ways to get on Nth step.

Solution: The solution can involve recursion. We can use Dynamice programming, bottom up approach:

function num_ways_bottom_ip(n) {
let nums = []; if (n === 0 || n === 1) {
return 1;
}
nums[0] = nums[1] = 1;
for (let i = 2; i <= n; i++) {
nums[i] = nums[i - 1] + nums[i - 2];
} return nums[n];
} console.log(num_ways_bottom_ip(5)); //

This now takes O(N * |X|) time and O(N) space. X is the step allow to take , in our case, is 2.

Now if the requirements changes form only take {1, 2} steps, to you can take {1,3,5} each at a time; How you could solve the problem;

The idea is pretty similar to {1,2} steps.

nums(i) = nums(i-1) + nums(i-2):

Therefore for {1.3.5} is equals:

nums(1) = nums(i-1) + nums(i-3) + nums(i-5)

We just need to make sure i-3, i-5 should be greater than 0.

function num_ways_bottom_up_X(n, x) {
let nums = []; if (n === 0) {
return 1;
}
nums[0] = 1; for (let i = 1; i <= n; i++) {
let total = 0;
for (let j of x) {
if (i - j >= 0) {
total += nums[i - j];
}
}
nums[i] = total;
} return nums[n];
} console.log(num_ways_bottom_up_X(5, [1,3,5])); //

[Algorithm -- Dynamic Programming] Recursive Staircase Problem的更多相关文章

  1. hdu 1159, LCS, dynamic programming, recursive backtrack vs iterative backtrack vs incremental, C++ 分类: hdoj 2015-07-10 04:14 112人阅读 评论(0) 收藏

    thanks prof. Abhiram Ranade for his vedio on Longest Common Subsequence 's back track search view in ...

  2. [Algorithm -- Dynamic programming] How Many Ways to Decode This Message?

    For example we have 'a' -> 1 'b' -> 2 .. 'z' -> 26 By given "12", we can decode t ...

  3. Algorithm: dynamic programming

    1. Longest Increasing Subsequence (LIS) problem unsorted array, calculate out the maximum length of ...

  4. [Algorithm] Dynamic programming: Find Sets Of Numbers That Add Up To 16

    For a given array, we try to find set of pair which sums up as the given target number. For example, ...

  5. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  6. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  7. 以计算斐波那契数列为例说说动态规划算法(Dynamic Programming Algorithm Overlapping subproblems Optimal substructure Memoization Tabulation)

    动态规划(Dynamic Programming)是求解决策过程(decision process)最优化的数学方法.它的名字和动态没有关系,是Richard Bellman为了唬人而取的. 动态规划 ...

  8. [Algorithms] Using Dynamic Programming to Solve longest common subsequence problem

    Let's say we have two strings: str1 = 'ACDEB' str2 = 'AEBC' We need to find the longest common subse ...

  9. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

随机推荐

  1. ActiveMQ 权限(一)

    在 ActiveMQ 认证(一) 中,若用户名或密码不正确,不能连接到ActiveMQ.我们可以通过配置文件,确用户是否有消息的读取.写入和管理的权限. 在plugin配置节点下,配置以下信息: &l ...

  2. Kali Linux缺少ifconfig命令

    Kali Linux缺少ifconfig命令   ifconfig是配置和查看网络的基础命令.在某些Kali Linux版本中,可能会缺少ifconfig命令.这个时候,用户需要手动安装该命令.该命令 ...

  3. Sublime Text的使用技巧

    来到腾讯之后,基本上整个团队都在使用Sublime Text这款编辑神器.虽说自己以前在写python的时候略有接触过,但只是把它当做简单的文本编辑器.来到这边后,才逐渐的体会到这款神作的牛逼之处. ...

  4. NOIP2018提高组题解

    D1T1:铺设道路 回忆NOIP2013D2T1 积木大赛,发现这两题唯一的区别就是一个是造山一个是填坑,而把填坑的操作反序就是造山,所以可以直接使用那道题的方法. 具体方法是,从左到右每次考虑新的一 ...

  5. [BZOJ 4071] 巴邻旁之桥

    Link: BZOJ 4071传送门 Solution: 首先算出能提前算的贡献 $K=1$:肯定选中间的点,小学数学 $K=2$:对于每对$(x,y)$一定选离$(x+y)/2$近的桥 也就是说将$ ...

  6. dcoker常用命令

    记录一下常用的命令 docker run -t -i  xxxx /bin/bash 运行容器的交互会话shell docker start xxxx 启动容器 docker stop xxxx 停止 ...

  7. 【ArcGIS笔记】数据处理

    1.ARCGIS在导入Excel坐标点的时候出现"没有注册类"的情况怎么办? 确保你本机上装有office,并且版本要能够识别XLSX格式.2007以上. 2.导入excel时re ...

  8. PHP -- 8个必备的PHP功能开发

    原文出处:http://www.codeceo.com/8-php-functions.html 做过PHP开发的程序员应该清楚,PHP中有很多内置的功能,掌握了它们,可以帮助你在做PHP开发时更加得 ...

  9. Codeforces Round #299 (Div. 1) A. Tavas and Karafs 水题

    Tavas and Karafs Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/536/prob ...

  10. 2015 UESTC 搜索专题A题 王之迷宫 三维bfs

    A - 王之迷宫 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/61 Des ...