Graph Automata Player
题目 action=problem&type=show&id=12839&courseid=269">here
第一道高速幂。同一时候也是第一道高斯消元。
输入的边的关系矩阵就是系数矩阵co
[co] ^ T * [ans]== (当前0时刻的状态)。[co] ^ T可由矩阵高速幂解得
那么-T时刻的状态便是ans矩阵的值。可由高斯消元解得
推断一下就可以
高斯消元中 系数矩阵是a[0...n - 1][0...m - 1] 常数矩阵是a[0...n - 1][m]
返回-1表示无解,等于0有唯一解。大于0表示不确定的变量个数
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
#include <bitset>
#include <fstream>
using namespace std; //LOOP
#define FF(i, a, b) for(int i = (a); i < (b); ++i)
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FED(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++) //OTHER
#define SZ(V) (int)V.size()
#define PB push_back
#define MP make_pair
#define all(x) (x).begin(),(x).end() //INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p)
#define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q)
#define RS(s) scanf("%s", s) //OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(n) printf("%s\n", n) //debug
//#define online_judge
#ifndef online_judge
#define dt(a) << (#a) << "=" << a << " "
#define debugI(a) cout dt(a) << endl
#define debugII(a, b) cout dt(a) dt(b) << endl
#define debugIII(a, b, c) cout dt(a) dt(b) dt(c) << endl
#define debugIV(a, b, c, d) cout dt(a) dt(b) dt(c) dt(d) << endl
#define debugV(a, b, c, d, e) cout dt(a) dt(b) dt(c) dt(d) dt(e) << endl
#else
#define debugI(v)
#define debugII(a, b)
#define debugIII(a, b, c)
#define debugIV(a, b, c, d)
#endif #define sqr(x) (x) * (x)
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> VI;
const double eps = 1e-9;
const int MOD = 1000000007;
const double PI = acos(-1.0);
//const int INF = 0x3f3f3f3f;
const int maxn = 310;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; struct Mat{
int n, m;
bool v[maxn][maxn];
Mat(int n = 0, int m = 0, int zero = 0)
{
this->n = n; this->m = m;
if (zero)
{
REP(i, n) REP(j, m)
v[i][j] = false;
}
}
}; Mat mul(Mat& a, Mat&b)
{
Mat ret(a.n, b.m, 1);
REP(i, a.n)
REP(j, b.m)
REP(k, a.m)
ret.v[i][j] ^= (a.v[i][k] & b.v[k][j]);
return ret;
} Mat qpow(Mat& a, int b)
{
Mat ret(a.n, a.m);
bool f = 1;
while (b)
{
if (b & 1)
{
if (f)
ret = a, f = 0;
else
ret = mul(ret, a);
}
b >>= 1;
a = mul(a, a);
}
return ret;
} bool a[maxn][maxn];
int gauss(int N, int M)
{
int r, c, pvt;
bool flag;
for (r = 0, c = 0; r < N && c < M; r++, c++)
{
flag = false;
for (int i = r; i < N; i++)
if (a[i][c])
{
flag = a[pvt = i][c];
break;
}
if (!flag)
{
r--;
continue;
}
if (pvt != r)
for (int j = r; j <= M; j++)
swap(a[r][j], a[pvt][j]);
for (int i = r + 1; i < N; ++i) {
if (a[i][c])
{
a[i][c] = false;
for (int j = c + 1; j <= M; ++j)
if (a[r][j])
a[i][j] = !a[i][j];
}
}
}
for (int i = r; i < N; i++)
if (a[i][M])
return -1;
if (r < M)
return M - r;
for (int i = M - 1; i >= 0; i--)
{
for (int j = i + 1; j < M; j++)
if (a[i][j])
a[i][M] ^= a[j][M];
a[i][M] /= a[i][i];
}
return 0;
} int main()
{
int n, T, x;
while (~RI(n))
{
Mat co(n, n);
REP(i, n)
REP(j, n)
{
RI(x);
co.v[i][j] = (x == 1 ? true : false);
}
REP(i, n)
{
RI(x);
a[i][n] = (x == 1 ? true : false);
}
RI(T);
co = qpow(co, T);
REP(i, n) REP(j, n) a[i][j] = co.v[i][j];
int ans = gauss(n, n);
if (ans == -1)
puts("none");
else if (ans)
puts("ambiguous");
else
{
REP(i, n)
printf("%d%c", a[i][n], (i == n - 1 ? '\n' : ' '));
}
}
return 0;
}
Graph Automata Player的更多相关文章
- 转:Media Player Classic - HC 源代码分析
VC2010 编译 Media Player Classic - Home Cinema (mpc-hc) Media Player Classic - Home Cinema (mpc-hc)播放器 ...
- Codeforces Round #286 (Div. 1) D. Mr. Kitayuta's Colorful Graph 并查集
D. Mr. Kitayuta's Colorful Graph Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/ ...
- Codeforces Round #192 (Div. 1) C. Graph Reconstruction 随机化
C. Graph Reconstruction Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/3 ...
- Media Player Classic - HC 源代码分析 3:核心类 (CMainFrame)(2)
===================================================== Media Player Classic - HC 源代码分析系列文章列表: Media P ...
- Media Player Classic - HC 源代码分析 2:核心类 (CMainFrame)(1)
===================================================== Media Player Classic - HC 源代码分析系列文章列表: Media P ...
- Unity Shader Graph(二)Dissolve Effect
此篇文章记录Dissolve Effect(溶解特效)的制作过程 软件环境 Unity 2018.1.2f1 Packages: Lightweight Render Pipeline 1.1.11 ...
- NEERC 2016-2017 Probelm G. Game on Graph
title: NEERC 2016-2017 Probelm G. Game on Graph data: 2018-3-3 22:25:40 tags: 博弈论 with draw 拓扑排序 cat ...
- Codeforces Gym 101190 NEERC 16 G. Game on Graph(博弈+拓扑)
Gennady and Georgiy are playing interesting game on a directed graph. The graph has n vertices and m ...
- HDU - 3407 - String-Matching Automata
先上题目: String-Matching Automata Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
随机推荐
- React Native 系列(七)
前言 本系列是基于React Native版本号0.44.3写的.几乎所有的App都使用了ListView这种组件,这篇文章将学习RN中ListView的平铺样式和分组样式. ListView平铺样式 ...
- 「LOJ6482」LJJ爱数数
「LOJ6482」LJJ爱数数 解题思路 : 打表发现两个数 \(a, b\) 合法的充要条件是(我不管,我就是打表过的): \[ a + b = \text{gcd}(a, b)^2 \] 设 \( ...
- 91网漏洞打包#越权+爆破+存储xss可打cookie
漏洞一.主站存在登录口爆破 抓包,爆破一下 爆破成功 漏洞二.检测app时一处存储xss 在app登录后 我要提问那里插入xss 然后弹窗 可以打到cookie 漏洞三.app个人资料处平行越权可查看 ...
- Mac下配置Idea的Maven
环境版本: Mac OS: 10.13.4 JDK: 1.8 Idea: 2018.3 Maven: 3.6.0 Maven 相关配置: Maven 下载: http://maven.apache.o ...
- hdu 4112 Break the Chocolate 贪心
Break the Chocolate Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem. ...
- QTP 10 破解 之路
1.下载QTP 10 安装包 2.破解软件(mgn-mqt82.exe) (阿里云云主机里执行不了,一执行CPU就99%,也没有生成lservrc) 手动创建C:\Program Files (x8 ...
- CentOS 6.9/7通过yum安装指定版本的Tomcat
说明:通过yum好处其实很多,环境变量不用配置,配置文件放在大家都熟悉的地方,通过rpm -ql xxx可以知道全部文件的地方等等. 一.安装Tomcat(8+) // 下载脚本 # git clon ...
- objectiveC【语法】修饰符 static extern const
const const最好理解,修饰的东西不能被修改 指针类型根据位置的不同可以理解成3种情况: I 常量指针 // 初始化之后不能赋值,指向的对象可以是任意对象,对象可变. NSString * c ...
- Spring JavaConfig实例
从Spring 3起,JavaConfig功能已经包含在Spring核心模块,它允许开发者将bean定义和在Spring配置XML文件到Java类中. 但是,仍然允许使用经典的XML方式来定义bean ...
- How Basic Performance Analysis Saved Us Millions-------火焰图
ENGINEERING How Basic Performance Analysis Saved Us Millions Michael Malis May 19, 2017 9 min read ...