Training little cats

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 11787 Accepted: 2892

Description

Facer’s pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the cats to do his exercises. Facer’s great exercise for cats contains three different moves:

g i : Let the ith cat take a peanut.

e i : Let the ith cat eat all peanuts it have.

s i j : Let the ith cat and jth cat exchange their peanuts.

All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea.

You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes “0 0 0”. For each test case, three integers n, m and k are given firstly, where n is the number of cats and k is the length of the move sequence. The following k lines describe the sequence.

(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6

g 1

g 2

g 2

s 1 2

g 3

e 2

0 0 0

Sample Output

2 0 1

这个也是构造矩阵,



这里三个操作可以合并的,也就是不用每次都构造一个新的矩阵,具体见代码

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <math.h> using namespace std;
typedef long long int LL;
int n,k;
LL mod;
struct Node
{
LL a[105][105];
};
char m[10];
Node mutiply(Node a,Node b)
{
Node c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=n+1;i++)
{
for(int j=1;j<=n+1;j++)
{
if(!a.a[i][j]) continue;
for(int k=1;k<=n+1;k++)
c.a[i][k]+=a.a[i][j]*b.a[j][k];
}
}
return c;
}
Node get(Node a,LL x)
{
Node c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=n+1;i++)
c.a[i][i]=1;
for(x;x;x>>=1)
{
if(x&1) c=mutiply(c,a);
a=mutiply(a,a);
}
return c;
}
int main()
{
int x;int y;
while(scanf("%d%lld%d",&n,&mod,&k)!=EOF)
{
if(n==0&&mod==0&&k==0)
break;
Node a;
memset(a.a,0,sizeof(a.a));
for(int i=1;i<=n+1;i++)
a.a[i][i]=1;
for(int i=1;i<=k;i++)
{ scanf("%s",m);
if(m[0]=='g')
{
scanf("%d",&x);
a.a[x][n+1]++;
}
else if(m[0]=='e')
{
scanf("%d",&x);
for(int j=1;j<=n+1;j++)
a.a[x][j]=0;
}
else if(m[0]=='s')
{
scanf("%d%d",&x,&y);
for(int j=1;j<=n+1;j++)
swap(a.a[x][j],a.a[y][j]);
}
}
a=get(a,mod);
Node c;
memset(c.a,0,sizeof(c.a));
c.a[n+1][1]=1;
a=mutiply(a,c);
for(int i=1;i<=n;i++)
printf("%lld ",a.a[i][1]);
printf("\n");
}
return 0;
}

POJ 3735 Training little cats(矩阵快速幂)的更多相关文章

  1. poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化

    题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...

  2. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  3. POJ 3735 Training little cats 矩阵快速幂

    http://poj.org/problem?id=3735 给定一串操作,要这个操作连续执行m次后,最后剩下的值. 记矩阵T为一次操作后的值,那么T^m就是执行m次的值了.(其实这个还不太理解,但是 ...

  4. poj 3753 Training little cats_矩阵快速幂

    题意: 通过各种操作进行,给第i只猫花生,第i只猫吃光花生,第i只猫和第j只猫互换花生,问n次循环操作后结果是什么 很明显是构建个矩阵,然后矩阵相乘就好了 #include <iostream& ...

  5. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  6. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  7. poj 3735 Training little cats(矩阵快速幂,模版更权威,这题数据很坑)

    题目 矩阵快速幂,这里的模版就是计算A^n的,A为矩阵. 之前的矩阵快速幂貌似还是个更通用一些. 下面的题目解释来自 我只想做一个努力的人 @@@请注意 ,单位矩阵最初构造 行和列都要是(猫咪数+1) ...

  8. Training little cats_矩阵快速幂

    Description Facer's pet cat just gave birth to a brood of little cats. Having considered the health ...

  9. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  10. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

随机推荐

  1. Qt 2D绘图高级篇

    1.拖动模式 在QGraphicView中提供了三种拖动模式,分别是: QGraphicsView::NoDrag :忽略鼠标事件,不可以拖动. QGraphicsView::ScrollHandDr ...

  2. javascript递归、循环、迭代、遍历和枚举概念

    javascript递归.循环.迭代.遍历和枚举概念 〓递归(recursion)在数学与计算机科学中,是指在函数的定义中使用函数自身的方法.递归一词还较常用于描述以自相似方法重复事物的过程.例如,当 ...

  3. 信号处理函数(2)-sigismember()

    定义: int sigismember(const sigset_t *set,int signum);   表头文件: #include<signal.h>   说明: sigismem ...

  4. CXCommon.h工具类

    #ifndef __XCOMMON_H__ #define __XCOMMON_H__ /******************************************************* ...

  5. 高性能爬虫——asynicio模块

      一 背景知识 爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低. 需要强调 ...

  6. Java之旅hibernate(8)——基本关系映射

    何为关系,何为映射,关系这个词想必大家都不陌生.比方你和老师之间是师生关系,你和父母之间是父子或者父女(母子或者母女关系). 关系是存在某种联系物体之间产生的.什么都是可能的.比方你和工具,你仅仅能使 ...

  7. [device]/proc/devices and /dev/

    1. /proc/devices和/dev cat /proc/devices 列出在当前运行的内核中已经注册的设备名称以及设备的Major主设备号.其中的设备信息是驱动程序在加载时生成的,也可以说是 ...

  8. URLDecoder: Incomplete trailing escape (%) pattern问题处理

    http://blog.csdn.net/yangbobo1992/article/details/10076335 _________________________________________ ...

  9. 服务器的svnserver修改密码

    VisualSVN Server是一个集成的svn服务端工具,是一款svn服务端不可多得的好工具.可以先安装好VisualSVN Server后,运行VisualSVN Server Manger,然 ...

  10. 【BZOJ】1681: [Usaco2005 Mar]Checking an Alibi 不在场的证明(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1681 太裸了.. #include <cstdio> #include <cstr ...