文章地址: https://blog.csdn.net/u014380165/article/details/71667916

论文:Aggregated Residual Transformations for Deep Neural Networks

这是一篇发表在2017CVPR上的论文,介绍了ResNet网络的升级版:ResNeXt。下面介绍我看这篇论文时候做的笔记,和大家一起分享该模型。

作者提出 ResNeXt 的主要原因在于:传统的要提高模型的准确率,都是加深或加宽网络,但是随着超参数数量的增加(比如channels数,filter size等等),网络设计的难度和计算开销也会增加。因此本文提出的
ResNeXt 结构可以在不增加参数复杂度的前提下提高准确率,同时还减少了超参数的数量(得益于子模块的拓扑结构一样,后面会讲)。

作者在论文中首先提到VGG,VGG主要采用堆叠网络来实现,之前的 ResNet 也借用了这样的思想。然后提到 Inception 系列网络,简单讲就是 split-transform-merge 的策略,但是 Inception 系列网络有个问题:网络的超参数设定的针对性比较强,当应用在别的数据集上时需要修改许多参数,因此可扩展性一般。
于是重点来了,作者在这篇论文中提出网络 ResNeXt,同时采用 VGG 堆叠的思想和 Inception 的 split-transform-merge 思想,但是可扩展性比较强,可以认为是在增加准确率的同时基本不改变或降低模型的复杂度。这里提到一个名词cardinality,原文的解释是the
size of the set of transformations,如下图 Fig1 右边是 cardinality=32 的样子,这里注意每个被聚合的拓扑结构都是一样的(这也是和 Inception 的差别,减轻设计负担)


附上原文比较核心的一句话,点明了增加 cardinality 比增加深度和宽度更有效,这句话的实验结果在后面有展示:


当然还有一些数据证明 ResNeXt 网络的优越性,例如原文中的这句话:In particular, a 101-layer ResNeXt is able to achieve better accuracy than ResNet-200 but has only 50% complexity.

Table1 列举了 ResNet-50 和 ResNeXt-50 的内部结构,另外最后两行说明二者之间的参数复杂度差别不大。


接下来作者要开始讲本文提出的新的 block,举全连接层(Inner product)的例子来讲,我们知道全连接层的就是以下这个公式:


再配上这个图就更容易理解其splitting,transforming和aggregating的过程。

然后作者的网络其实就是将其中的 wixi替换成更一般的函数,这里用了一个很形象的词:Network
in Neuron,式子如下:


其中C就是 cardinality,Ti有相同的拓扑结构(本文中就是三个卷积层的堆叠)。

然后看看fig 3。这里作者展示了三种相同的 ResNeXt blocks。fig3.a 就是前面所说的aggregated residual transformations。 fig3.b 则采用两层卷积后 concatenate,再卷积,有点类似 Inception-ResNet,只不过这里的 paths 都是相同的拓扑结构。fig 3.c采用的是grouped
convolutions,这个 group 参数就是 caffe 的 convolusion 层的 group 参数,用来限制本层卷积核和输入 channels 的卷积,最早应该是 AlexNet 上使用,可以减少计算量。这里 fig 3.c 采用32个 group,每个 group 的输入输出 channels 都是4,最后把channels合并。这张图的 fig3.c 和 fig1 的左边图很像,差别在于fig3.c的中间 filter 数量(此处为128,而fig 1中为64)更多。作者在文中明确说明这三种结构是严格等价的,并且用这三个结构做出来的结果一模一样,在本文中展示的是
fig3.c 的结果,因为 fig3.c 的结构比较简洁而且速度更快。


这个表2主要列举了一些参数,来说明 fig1 的左右两个结构的参数复杂度差不多。第二行的d表示每个path的中间channels数量,最后一行则表示整个block的宽度,是第一行C和第二行d的乘积。


在实验中作者说明ResNeXt和ResNet-50/101的区别仅仅在于其中的block,其他都不变。贴一下作者的实验结果:相同层数的ResNet和ResNeXt的对比:(32*4d表示32个paths,每个path的宽度为4,如fig3)。实验结果表明ResNeXt和ResNet的参数复杂度差不多,但是其训练误差和测试误差都降低了。


另一个实验结果的表格,主要说明增加Cardinality和增加深度或宽度的区别,增加宽度就是简单地增加filter channels。第一个是基准模型,增加深度和宽度的分别是第三和第四个,可以看到误差分别降低了0.3%和0.7%。但是第五个加倍了Cardinality,则降低了1.3%,第六个Cardinality加到64,则降低了1.6%。显然增加Cardianlity比增加深度或宽度更有效。


接下来这个表一方面证明了residual connection的有效性,也证明了aggregated transformations的有效性,控制变量的证明方式,比较好理解。


因此全文看下来,作者的核心创新点就在于提出了 aggregrated transformations,用一种平行堆叠相同拓扑结构的blocks代替原来 ResNet 的三层卷积的block,在不明显增加参数量级的情况下提升了模型的准确率,同时由于拓扑结构相同,超参数也减少了,便于模型移植另外该算法目前只有Torch版本。

文章来源: https://www.cnblogs.com/lillylin/p/6799173.html

Saining——【arXiv2017】Aggregated Residual Transformations for Deep Neural Networks


目录

  • 作者和相关链接
  • 主要思想
  • ResNet和ResNext对比

作者和相关链接

  • 作者

主要思想

  

  • 要解决的问题是什么?

  对于ResNet,VGG,Inception等网络,需要由一些重复的building block堆叠而成,而这些building block的滤波器个数,大小等不能任意设置,需要人工调整。由于其中有很多超参数需要调整,而且在不同的vision task甚至是不同的dataset上参数不能直接共享需要进行个性化定制,因此,这种需要为一定task或者dataset定制的module虽然效果好,但通用性太差。这篇文章介绍了一种新的building block,可以用来替换ResNet的building block,新的模型称为ResNeXt。ResNeXt的最大优势在于整个网络的building block都是一样的,不用在每个stage里再对每个building block的超参数进行调整,只用一个building block,重复堆叠即可形成整个网络。实验结果表明ResNeXt比ResNet在同样模型大小的情况下效果更好

  • 解决思路?

  将ResNet的blcok(如图Figure 1的左图所示)换成ResNeXt的block(如图Figure 1的右图所示),实际上是将左边的64个卷积核分成了右边32条不同path,每个path有4个卷积核,最后的32个path将输出向量直接pixel-wise相加(所有通道对应位置点相加),再与Short Cut相加

Figure 1. Left: A block of ResNet [13]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels) 

  • Cardinality和Bottleneck

  这篇文章提出了一种新的衡量模型容量(capacity,指的是模型拟合各种函数的能力)。在此之前,模型容量有宽度(width)和高度(height)这两种属性,本文提出的“Cardinality”指的是网络结构中的building block的变换的集合大小(the size of the set of transformation)。如图Figure 2所示,(a)、(b)、(c)三种结构是等价的,本文用的是图(c)。实际上Cardinality指的就是Figure 2(b)中path数或Figure 2(c)中group数,即每一条path或者每一个group表示一种transformation,因此path数目或者group个数即为Cardinality数。Bottleneck指的是在每一个path或者group中,中间过渡形态的feature map的channel数目(或者卷积核个数),如Figure 2(a)中,在每一条path中,对于输入256维的向量,使用了4个1*1*256的卷积核进行卷积后得到了256*4的feature map,即4个channel,每个channel的feature map大小为256维,因此,Bottleneck即为4。

Figure 2. Equivalent building blocks of ResNeXt. (a): Aggregated residual transformations, the same as Fig. 1 right. (b): A block equivalent to (a), implemented as early concatenation. (c): A block equivalent to (a,b), implemented as grouped convolutions [23]. Notations in bold text highlight the reformulation changes. A layer is denoted as (# input channels, filter size, # output channels).

ResNet和ResNeXt对比

  • 网络结构对比

  图Figure 2所示表示的depth=3的情况下ResNet和ResNeXt的building block的对比。

  • 具体配置对比

  ResNet-50和ResNeXt-50的building block的配置对比如Table 1所示,图中C=32即表示Cardinality=32,Bottleneck= 4,即如图Figure 2中所示。

Table 1. (Left) ResNet-50. (Right) ResNeXt-50 with a 32×4d template (using the reformulation in Fig. 3(c)). Inside the brackets are the shape of a residual block, and outside the brackets is the number of stacked blocks on a stage. “C=32” suggests grouped convolutions [23] with 32 groups. The numbers of parameters and FLOPs are similar between these two models.

  • 模型大小计算

  以图Figure 3为例,ResNet的参数个数为256 · 64 + 3 · 3 · 64 · 64 + 64 · 256 ≈ 70k  。

ResNeXt的参数个数为C · (256 · d + 3 · 3 · d · d + d · 256),其中,C表示Cardinality=32,d表示bottleneck=4,因此参数总数 ≈ 70k  。

Figure 3. Left: A block of ResNet [13]. Right: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels) 

  • 实验结果对比

    • 证明ResNeXt比ResNet更好,而且Cardinality越大效果越好

Table 2. Ablation experiments on ImageNet-1K. (Top): ResNet-50 with preserved complexity (∼4.1 billion FLOPs); (Bottom): ResNet-101 with preserved complexity ∼7.8 billion FLOPs). The error rate is evaluated on the single crop of 224×224 pixels.

    • 证明增大Cardinality比增大模型的width或者depth效果更好

Table 3. Comparisons on ImageNet-1K when the number of FLOPs is increased to 2× of ResNet-101’s. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

[Network Architecture]ResNext论文笔记(转)的更多相关文章

  1. [Network Architecture]Xception 论文笔记(转)

    文章来源 论文:Xception: Deep Learning with Depthwise Separable Convolutions 论文链接:https://arxiv.org/abs/161 ...

  2. 论文笔记系列-Neural Network Search :A Survey

    论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...

  3. 论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

    前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResN ...

  4. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  5. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  6. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  7. 论文笔记 《Maxout Networks》 && 《Network In Network》

    论文笔记 <Maxout Networks> && <Network In Network> 发表于 2014-09-22   |   1条评论 出处 maxo ...

  8. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  9. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

随机推荐

  1. ROS 笔记

    ros的编程范式 - ros认为,linux平台下,机器人的软件由一个个小程序组成,这些小程序称为node,每个小程序负责一部分功能 - ros实现的框架就是,小程序的并发执行+相互通信,程序(进程) ...

  2. 如何使文本溢出边界不换行强制在一行内显示?#test{width:150px;white-space:nowrap;}

    #test{width:150px;white-space:nowrap;}

  3. ubuntu安装mysql步骤

    https://dev.mysql.com/downloads/file/?id=477124 ubuntu上安装mysql非常简单只需要几条命令就可以完成. 1. sudo apt-get inst ...

  4. Ant-Design如何使用

    1.下载Node.js Node.js的版本需要不低于V4.x,本不在省略,如果需要出门左转Node.js安装教程. 查看Node.js版本: C:\Users\Administrator>no ...

  5. ubuntu安装markdown

    # sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys BA300B7755AFCFAE linuxidc@linuxidc:~ ...

  6. wpa安装方法

    1.openssl 2.lib 1.1.2 3.wpa lua 编译错误 http://www.blogjava.net/xiaomage234/archive/2013/09/13/404037.h ...

  7. ALV tree标准DEMO

    BCALV_TREE_01 ALV 树控制:构建层次树 BCALV_TREE_02 ALV 树控制:事件处理 BCALV_TREE_03 ALV 树控制:使用自己的上下文菜单 BCALV_TREE_0 ...

  8. Mysql binlog 安全删除(转载)

    简介: 如果你的 Mysql 搭建了主从同步 , 或者数据库开启了 log-bin 日志 , 那么随着时间的推移 , 你的数据库 data 目录下会产生大量的日志文件 shell > ll /u ...

  9. What does Quick Sort look like in Python?

    Let's talk about something funny at first. Have you ever implemented the Quick Sort algorithm all by ...

  10. ruby on rails 数据库操作

    (1)增加列的操作 rails generate migration add_password_digest_to_students password_digest:string bundle exe ...