move_base的 局部路径规划代码研究
base_local_planner
Given a plan to follow and a costmap, the controller produces velocity commands to send to a mobile base.
他的功能是给一个global plan和local costmap,局部路径规划器计算出可行的速度发送给机器人
base_local_planner::TrajectoryPlanner
provides implementations of the DWA and Trajectory Rollout
It should be possible to create custom local planners using the dwa_local_planner as template and just adding own cost functions or trajectory generators.
你可以参照DWA
实现自己的局部规路径算法
算法主要是在局部的costmap中模拟计算沿着不同的方向进行定义的cost函数的大小,选择一个cost小的正的的方向前进。
主要是进行计算cost函数,每个cost可以有weight参数调整,这个可以算是灵活和也可以说是不稳定的因素(要自己调试)
- ObstacleCostFunction
- MapGridCostFunction
- OscillationCostFunction
- PreferForwardCostFunction
teb_local_planner
优化轨迹执行的时间,与障碍物的距离,满足最大的速度与加速度的要求
Support of holonomic robots is included since Kinetic
parameter
参数分为一下几类(记住有些参数他在ros wiki里面是没有说明的,在代码里面有的,不是所有的参数都可以通过rqt_reconfigure配置的,有很少的一部分是不行的):
所有的参数你都可以在teb_config.h
中找到初始值和含义
robot configuration
跟机器人底盘是圆形,多边形,car-like有关,在后面的优化有用到,要设置正确
~<name>/max_vel_x_backwards (double, default: 0.2)
Maximum absolute translational velocity of the robot while driving backwards in meters/sec. See optimization parameter weight_kinematics_forward_drive
- goal tolerance
~<name>/xy_goal_tolerance (double, default: 0.2)
~<name>/yaw_goal_tolerance (double, default: 0.2)
#Remove the goal velocity constraint such that the robot can arrive at the goal with maximum speed
~<name>/free_goal_vel (bool, default: false)
- trajectory configuration
# 轨迹的空间分辨率,只是一个参考值,真实的分辨率跟别的还有关
~<name>/dt_ref (double, default: 0.3)
- obstacles
#距离障碍物的最短距离
~<name>/min_obstacle_dist (double, default: 0.5)
#Limit the occupied local costmap obstacles taken into account for planning behind the robot (specify distance in meters).
~<name>/costmap_obstacles_behind_robot_dist (double, default: 1.0)
#障碍物会影响的pose的个数,
#bool legacy_obstacle_association; //!< If true, the old association strategy is used (for each obstacle, find the nearest TEB pose), otherwise the new one (for each teb pose, find only "relevant" obstacles).
~<name>/obstacle_poses_affected (int, default: 30)
- optimization
#只允许前进的权重
~<name>/weight_kinematics_forward_drive (double, default: 1.0)
#远离障碍物至少min_obstacle_dist的权重
~<name>/weight_obstacle (double, default: 50.0)
#紧跟global plan的权重
~<name>/weight_viapoint (double, default: 1.0)
- parallel planning in distinctive topologies
#允许并进计算,消耗更多的计算资源
~<name>/enable_homotopy_class_planning (bool, default: true)
~<name>/enable_multithreading (bool, default: true)
#Specify how much trajectory cost must a new candidate have w.r.t. a previously selected trajectory in order to be selected (selection if new_cost < old_cost*factor).
~<name>/selection_cost_hysteresis (double, default: 1.0)
#Extra scaling of obstacle cost terms just for selecting the 'best' candidate.
~<name>/selection_obst_cost_scale (double, default: 100.0)
#Extra scaling of via-point cost terms just for selecting the 'best' candidate. New in version 0.4
~<name>/selection_viapoint_cost_scale (double, default: 1.0)
- miscellaneous parameters
code
void TebLocalPlannerROS::initialize(std::string name, tf::TransformListener* tf, costmap_2d::Costmap2DROS* costmap_ros)
{
// create the planner instance
if (cfg_.hcp.enable_homotopy_class_planning)
{
planner_ = PlannerInterfacePtr(new HomotopyClassPlanner(cfg_, &obstacles_, robot_model, visualization_, &via_points_));
ROS_INFO("Parallel planning in distinctive topologies enabled.");
}
else
{
planner_ = PlannerInterfacePtr(new TebOptimalPlanner(cfg_, &obstacles_, robot_model, visualization_, &via_points_));
ROS_INFO("Parallel planning in distinctive topologies disabled.");
}
}
bool TebLocalPlannerROS::computeVelocityCommands(geometry_msgs::Twist& cmd_vel)
{
// prune global plan to cut off parts of the past (spatially before the robot)
pruneGlobalPlan(*tf_, robot_pose, global_plan_);
// Transform global plan to the frame of interest (w.r.t. the local costmap)
if (!transformGlobalPlan(*tf_, global_plan_, robot_pose, *costmap_, global_frame_, cfg_.trajectory.max_global_plan_lookahead_dist,
transformed_plan, &goal_idx, &tf_plan_to_global))
{
ROS_WARN("Could not transform the global plan to the frame of the controller");
return false;
}
// check if we should enter any backup mode and apply settings
configureBackupModes(transformed_plan, goal_idx);
updateObstacleContainerWithCostmap();
// Now perform the actual planning
bool success = planner_->plan(transformed_plan, &robot_vel_, cfg_.goal_tolerance.free_goal_vel);
bool feasible = planner_->isTrajectoryFeasible(costmap_model_.get(), footprint_spec_, robot_inscribed_radius_, robot_circumscribed_radius, cfg_.trajectory.feasibility_check_no_poses);
if (!planner_->getVelocityCommand(cmd_vel.linear.x, cmd_vel.linear.y, cmd_vel.angular.z)){
}
}
bool TebOptimalPlanner::plan(const std::vector<geometry_msgs::PoseStamped>& initial_plan, const geometry_msgs::Twist* start_vel, bool free_goal_vel)
{
if (!teb_.isInit()){
// init trajectory
teb_.initTEBtoGoal(initial_plan, cfg_->trajectory.dt_ref, cfg_->trajectory.global_plan_overwrite_orientation, cfg_->trajectory.min_samples, cfg_->trajectory.allow_init_with_backwards_motion);
}
else{
PoseSE2 start_(initial_plan.front().pose);
PoseSE2 goal_(initial_plan.back().pose);
if (teb_.sizePoses()>0 && (goal_.position() - teb_.BackPose().position()).norm() < cfg_->trajectory.force_reinit_new_goal_dist) // actual warm start!
teb_.updateAndPruneTEB(start_, goal_, cfg_->trajectory.min_samples); // update TEB
else // goal too far away -> reinit
{
ROS_DEBUG("New goal: distance to existing goal is higher than the specified threshold. Reinitalizing trajectories.");
teb_.clearTimedElasticBand();
teb_.initTEBtoGoal(initial_plan, cfg_->trajectory.dt_ref, true, cfg_->trajectory.min_samples, cfg_->trajectory.allow_init_with_backwards_motion);
}
}
// now optimize
return optimizeTEB(cfg_->optim.no_inner_iterations, cfg_->optim.no_outer_iterations);
}
bool TebOptimalPlanner::optimizeTEB(int iterations_innerloop, int iterations_outerloop, bool compute_cost_afterwards,
double obst_cost_scale, double viapoint_cost_scale, bool alternative_time_cost)
{
for(int i=0; i<iterations_outerloop; ++i)
{
if (cfg_->trajectory.teb_autosize)
teb_.autoResize(cfg_->trajectory.dt_ref, cfg_->trajectory.dt_hysteresis, cfg_->trajectory.min_samples, cfg_->trajectory.max_samples);
//构建图
success = buildGraph(weight_multiplier);
if (!success)
{
clearGraph();
return false;
}
//优化图
success = optimizeGraph(iterations_innerloop, false);
if (!success)
{
clearGraph();
return false;
}
if (compute_cost_afterwards && i==iterations_outerloop-1) // compute cost vec only in the last iteration
computeCurrentCost(obst_cost_scale, viapoint_cost_scale, alternative_time_cost);
clearGraph();
weight_multiplier *= cfg_->optim.weight_adapt_factor;
}
}
bool TebOptimalPlanner::buildGraph(double weight_multiplier)
{
// add TEB vertices
AddTEBVertices();
// add Edges (local cost functions)
if (cfg_->obstacles.legacy_obstacle_association)
AddEdgesObstaclesLegacy(weight_multiplier);
else
AddEdgesObstacles(weight_multiplier);
//AddEdgesDynamicObstacles();
AddEdgesViaPoints();
AddEdgesVelocity();
AddEdgesAcceleration();
AddEdgesTimeOptimal();
if (cfg_->robot.min_turning_radius == 0 || cfg_->optim.weight_kinematics_turning_radius == 0)
AddEdgesKinematicsDiffDrive(); // we have a differential drive robot
else
AddEdgesKinematicsCarlike(); // we have a carlike robot since the turning radius is bounded from below.
AddEdgesPreferRotDir();
}
bool TebOptimalPlanner::optimizeGraph(int no_iterations,bool clear_after)
{
if (cfg_->robot.max_vel_x<0.01)
{
ROS_WARN("optimizeGraph(): Robot Max Velocity is smaller than 0.01m/s. Optimizing aborted...");
if (clear_after) clearGraph();
return false;
}
if (!teb_.isInit() || teb_.sizePoses() < cfg_->trajectory.min_samples)
{
ROS_WARN("optimizeGraph(): TEB is empty or has too less elements. Skipping optimization.");
if (clear_after) clearGraph();
return false;
}
// boost::shared_ptr<g2o::SparseOptimizer> optimizer_; //!< g2o optimizer for trajectory optimization
optimizer_->setVerbose(cfg_->optim.optimization_verbose);
optimizer_->initializeOptimization();
int iter = optimizer_->optimize(no_iterations);
if(!iter)
{
ROS_ERROR("optimizeGraph(): Optimization failed! iter=%i", iter);
return false;
}
if (clear_after) clearGraph();
}
g2o
boost::shared_ptr<g2o::SparseOptimizer> TebOptimalPlanner::initOptimizer()
{
// Call register_g2o_types once, even for multiple TebOptimalPlanner instances (thread-safe)
static boost::once_flag flag = BOOST_ONCE_INIT;
boost::call_once(®isterG2OTypes, flag);
// allocating the optimizer
boost::shared_ptr<g2o::SparseOptimizer> optimizer = boost::make_shared<g2o::SparseOptimizer>();
//typedef g2o::LinearSolverCSparse<TEBBlockSolver::PoseMatrixType> TEBLinearSolver;
TEBLinearSolver* linearSolver = new TEBLinearSolver(); // see typedef in optimization.h
linearSolver->setBlockOrdering(true);
//typedef g2o::BlockSolver< g2o::BlockSolverTraits<-1, -1> > TEBBlockSolver;
TEBBlockSolver* blockSolver = new TEBBlockSolver(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(blockSolver);
optimizer->setAlgorithm(solver);
optimizer->initMultiThreading(); // required for >Eigen 3.1
return optimizer;
}
move_base的 局部路径规划代码研究的更多相关文章
- move_base的全局路径规划代码研究
algorithmn parameter code 主要是以下三个函数 计算所有的可行点 怎么计算一个点的可行点 从可行点中计算路径path todo algorithmn 算法的解释 Dijkstr ...
- DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。
DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1 ...
- ros局部路径规划-DWA学习
ROS的路径规划器分为全局路径和局部路径规划,其中局部路径规划器使用的最广的为dwa,个人理解为: 首先全局路径规划会生成一条大致的全局路径,局部路径规划器会把全局路径给分段,然后根据分段的全局路径的 ...
- ROS源码解读(一)--局部路径规划
博客转载自:https://blog.csdn.net/xmy306538517/article/details/78772066 ROS局部路径导航包括Trajectory Rollout 和 Dy ...
- ROS机器人路径规划介绍--全局规划
ROS机器人路径规划算法主要包括2个部分:1)全局路径规划算法:2)局部路径规划算法: 一.全局路径规划 global planner ROS 的navigation官方功能包提供了三种全局路径规划器 ...
- 路径规划: PRM 路径规划算法 (Probabilistic Roadmaps 随机路标图)
随机路标图-Probabilistic Roadmaps (路径规划算法) 路径规划作为机器人完成各种任务的基础,一直是研究的热点.研究人员提出了许多规划方法如: 1. A* 2. Djstar 3. ...
- ROS探索总结(十四)——move_base(路径规划)
在上一篇的博客中,我们一起学习了ROS定位于导航的总体框架,这一篇我们主要研究其中最重要的move_base包. 在总体框架图中可以看到,move_base提供了ROS导航的配置.运行.交互接口,它主 ...
- 【路径规划】 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame (附python代码实例)
参考与前言 2010年,论文 Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame 地址:https ...
- V-rep学习笔记:机器人路径规划1
Motion Planning Library V-REP 从3.3.0开始,使用运动规划库OMPL作为插件,通过调用API的方式代替以前的方法进行运动规划(The old path/motion ...
随机推荐
- 用Python实现多站点运维监控
在小型公司里如果产品线单一的话,比如就一个app, 一般1~2个运维就够用了.如果产品过于庞大,就需要多个运维人员. 但对于多产品线的公司来说,运维人员就要必须分多个人负责,因为超过200个站点让1个 ...
- Amazon Headlines Update on Activity in US West Coast Ports
According to news reports, freighter cargo may not be offloaded at U.S. West Coast ports from Februa ...
- 改进意见的答复及bug重现
各组对本组的互评链接如下 Thunder:http://www.cnblogs.com/vector121/p/7905300.html 王者荣耀交流协会:http://www.cnblogs.com ...
- FIsherman丶Team
小组成员:郝恒杰,洪佳兴,张子祥 组长:郝恒杰 项目:Fisher Job(渔夫兼职) 简介: 我们的产品渔夫兼职是为了解决大学生兼职群体 的痛苦,他们需要一个好的渠道去找一个让自己满意的兼职,但是现 ...
- c# 读取blob数据
Stream stream = new MemoryStream(data); BinaryReader r = new BinaryReader(stream); int iRawImageWidt ...
- 2018软工实践—Alpha冲刺(7)
队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭鸭鸭鸭鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 学习MSI.CUDA 试运行软件并调试 ...
- HDU 5191 Building Blocks
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5191 bc(中文):http://bestcoder.hdu.edu.cn/contests ...
- Navicat for mysql导入.sql数据库大小受限制
把导入单个表的最大限制调一下就行(在my.ini里面就算改了max_allowed_packet也不一定行,因为Navicat貌似并不调用,实际他有自己的一套默认配置,所以需要在Navicat上调整) ...
- Microsoft Orleans 之简介
Microsoft Orleans 在.net用简单方法构建高并发.分布式的大型应用程序框架. 原文:http://dotnet.github.io/orleans/ 在线文档:http://dotn ...
- 写在SVM之前——凸优化与对偶问题
SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到 ...