package com.doctor.logbackextend;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties; import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; import org.apache.commons.lang.RandomStringUtils;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; /**
* zookeeper 和kafka环境准备好。 本地端口号默认设置
*
* @author doctor
*
* @time 2014年10月24日 下午3:14:01
*/
public class KafkaAppenderTest {
private static final Logger LOG = LoggerFactory.getLogger(KafkaAppenderTest.class); /** 先启动此測试方法,模拟log日志输出到kafka */
@Test
public void test_log_producer() {
while(true){
LOG.info("test_log_producer : " + RandomStringUtils.random(3, "hello doctro,how are you,and you"));
}
} /** 再启动此測试方法。模拟消费者获取日志,进而分析,此方法不过打印打控制台,不是log。防止模拟log測试方法数据混淆 */
@Test
public void test_comsumer(){
Properties props = new Properties();
props.put("zookeeper.connect", "127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183");
props.put("group.id", "kafkatest-group");
// props.put("zookeeper.session.timeout.ms", "400");
// props.put("zookeeper.sync.time.ms", "200");
// props.put("auto.commit.interval.ms", "1000");
ConsumerConfig paramConsumerConfig = new ConsumerConfig(props );
ConsumerConnector consumer = Consumer.createJavaConsumerConnector(paramConsumerConfig ); Map<String, Integer> topicCountMap = new HashMap<>();
topicCountMap.put("kafka-test", new Integer(1));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerStream = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerStream.get("kafka-test"); for (KafkaStream<byte[], byte[]> stream : streams) {
ConsumerIterator<byte[], byte[]> it = stream.iterator();
while(it.hasNext())
System.out.println(new String("test_comsumer: " + new String(it.next().message())));
} } }

为了实时日志处理互联网系统的日志,对于电商来说具有非常重要的意义,比方,淘宝购物时候,你浏览某些商品的时候。系统后台实时日志处理分析后,系统能够向用户实时推荐给用户相关商品。来引导用户的选择等等。

为了实时日志处理。我们选择kafka集群,日志的处理分析选择jstorm集群,至于jstorm处理的结果,你能够选择保存到数据库里。入hbase、mysql。maridb等。

系统的日志接口选择了slf4j,logback组合,为了让系统的日志可以写入kafka集群,选择扩展logback Appender。在logback里配置一下。就行自己主动输出日志到kafka集群。

kafka的集群安装,在此不介绍了,为了模拟真实性,zookeeper本地集群也安装部署了。

以下是怎样扩展logback Appender

package com.doctor.logbackextend;

import java.util.Properties;

import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import ch.qos.logback.classic.spi.ILoggingEvent;
import ch.qos.logback.core.AppenderBase; public class KafkaAppender extends AppenderBase<ILoggingEvent> { private String topic;
private String zookeeperHost; private String broker;
private Producer<String, String> producer;
private Formatter formatter; public String getBroker() {
return broker;
} public void setBroker(String broker) {
this.broker = broker;
}
@Override
protected void append(ILoggingEvent eventObject) {
String message = this.formatter.formate(eventObject);
this.producer.send(new KeyedMessage<String, String>(this.topic, message)); } @Override
public void start() {
if (this.formatter == null) {
this.formatter = new MessageFormatter();
} super.start();
Properties props = new Properties();
props.put("zk.connect", this.zookeeperHost);
props.put("metadata.broker.list", this.broker);
props.put("serializer.class", "kafka.serializer.StringEncoder"); ProducerConfig config = new ProducerConfig(props);
this.producer = new Producer<String, String>(config);
} @Override
public void stop() {
super.stop();
this.producer.close();
} public String getTopic() {
return topic;
} public void setTopic(String topic) {
this.topic = topic;
} public String getZookeeperHost() {
return zookeeperHost;
} public void setZookeeperHost(String zookeeperHost) {
this.zookeeperHost = zookeeperHost;
} public Producer<String, String> getProducer() {
return producer;
} public void setProducer(Producer<String, String> producer) {
this.producer = producer;
} public Formatter getFormatter() {
return formatter;
} public void setFormatter(Formatter formatter) {
this.formatter = formatter;
} /**
* 格式化日志格式
* @author doctor
*
* @time 2014年10月24日 上午10:37:17
*/
interface Formatter{
String formate(ILoggingEvent event);
} public static class MessageFormatter implements Formatter{ @Override
public String formate(ILoggingEvent event) { return event.getFormattedMessage();
} }
}

对于日志的输出格式MessageFormatter没有特殊处理,由于仅仅是模拟一下,你能够制定你的格式,入json等。



在logback.xml的配置例如以下:

<appender name="kafka" class="com.doctor.logbackextend.KafkaAppender">
<topic>kafka-test</topic>
<!-- <zookeeperHost>127.0.0.1:2181</zookeeperHost> -->
<!-- <broker>127.0.0.1:9092</broker> -->
<zookeeperHost>127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183</zookeeperHost>
<broker>127.0.0.1:9092,127.0.0.1:9093</broker>
</appender> <root level="all">
<appender-ref ref="stdout" />
<appender-ref ref="defaultAppender" />
<appender-ref ref="kafka" />
</root>
  <zookeeperHost>

我本地启动了三个zookeer。依据配置。你能够知道是怎样配置的吧。

kafka集群的broker我配置了两个,都是在本地机器。

測试代码:

package com.doctor.logbackextend;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties; import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; import org.apache.commons.lang.RandomStringUtils;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; /**
* zookeeper 和kafka环境准备好。本地端口号默认设置
*
* @author doctor
*
* @time 2014年10月24日 下午3:14:01
*/
public class KafkaAppenderTest {
private static final Logger LOG = LoggerFactory.getLogger(KafkaAppenderTest.class); /** 先启动此測试方法,模拟log日志输出到kafka */
@Test
public void test_log_producer() {
while(true){
LOG.info("test_log_producer : " + RandomStringUtils.random(3, "hello doctro,how are you,and you"));
}
} /** 再启动此測试方法,模拟消费者获取日志,进而分析,此方法不过打印打控制台,不是log。防止模拟log測试方法数据混淆 */
@Test
public void test_comsumer(){
Properties props = new Properties();
props.put("zookeeper.connect", "127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183");
props.put("group.id", "kafkatest-group");
// props.put("zookeeper.session.timeout.ms", "400");
// props.put("zookeeper.sync.time.ms", "200");
// props.put("auto.commit.interval.ms", "1000");
ConsumerConfig paramConsumerConfig = new ConsumerConfig(props );
ConsumerConnector consumer = Consumer.createJavaConsumerConnector(paramConsumerConfig ); Map<String, Integer> topicCountMap = new HashMap<>();
topicCountMap.put("kafka-test", new Integer(1));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerStream = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerStream.get("kafka-test"); for (KafkaStream<byte[], byte[]> stream : streams) {
ConsumerIterator<byte[], byte[]> it = stream.iterator();
while(it.hasNext())
System.out.println(new String("test_comsumer: " + new String(it.next().message())));
} } }

结果,明天再附上截图。

版权声明:本文博客原创文章,博客,未经同意,不得转载。

(一个)kafka-jstorm集群实时日志分析 它 ---------kafka实时日志处理的更多相关文章

  1. ELK+zookeeper+kafka+rsyslog集群搭建

    前言 环境困境: 1.开发人员无法登陆服务器 2.各系统都有日志,日志数据分散难以查找 3.日志数据量大,查询忙,不能实时 环境要求: 1.日志需要标准化   集群流程图:   角色:   软件: 以 ...

  2. kafka+zookeeper集群

    参考:  kafka中文文档   快速搭建kafka+zookeeper高可用集群   kafka+zookeeper集群搭建 kafka+zookeeper集群部署 kafka集群部署   kafk ...

  3. 分布式实时日志系统(一)环境搭建之 Jstorm 集群搭建过程/Jstorm集群一键安装部署

    最近公司业务数据量越来越大,以前的基于消息队列的日志系统越来越难以满足目前的业务量,表现为消息积压,日志延迟,日志存储日期过短,所以,我们开始着手要重新设计这块,业界已经有了比较成熟的流程,即基于流式 ...

  4. kafka高可用性集群

    kafka集群并测试其高可用性 介绍 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站 ...

  5. JStorm集群的安装和使用

    0 JStorm概述 JStorm是一个分布式的实时计算引擎.从应用的角度,JStorm应用是一种遵守某种编程规范的分布式应用:从系统角度, JStorm是一套类似MapReduce的调度系统: 从数 ...

  6. JStorm集群的部署

    JStorm是一个类似Hadoop MapReduce的系统,不同的是JStorm是一套基于流水线的消息处理机制,是阿里基于Storm优化的版本,和Storm一样是一个分布式实时计算的系统,从开发角度 ...

  7. SpringCloud升级之路2020.0.x版-20. 启动一个 Eureka Server 集群

    本系列代码地址:https://github.com/HashZhang/spring-cloud-scaffold/tree/master/spring-cloud-iiford 我们的业务集群结构 ...

  8. Storm集群启动流程分析

    Storm集群启动流程分析 程序员 1.客户端运行storm nimbus时,会调用storm的python脚本,该脚本中为每个命令编写了一个方法,每个方法都可以生成一条相应的Java命令. 命令格式 ...

  9. Kafka 单节点多Kafka Broker集群

    Kafka 单节点多Kafka Broker集群 接前一篇文章,今天搭建一下单节点多Kafka Broker集群环境. 配置与启动服务 由于是在一个节点上启动多个 Kafka Broker实例,所以我 ...

随机推荐

  1. JavaScript 中的闭包和作用域链(读书笔记)

    要想理解闭包,应当先理解JavaScript的作用域和作用域链. JavaScript有一个特性被称之为“声明提前(hoisting)”,即JavaScript函数里声明的所有变量(但不涉及赋值)都被 ...

  2. 七古&#183;夏泳小梅沙

    七古·夏泳小梅沙 文/天地尘埃2020 近日与同学等海泳小梅沙,归后背黑而焦灼如针刺.一周后焦皮始脱尽,发现还是往日那个黄种人.涂鸦一文以记之. 一湾碧水青山前, 夏日方来酷暑煎. 疏狂仅仅愿清凉刻, ...

  3. 低版本的 opencv库的 vs2010 打开 高版本opencv

    打开track.vcxproj文件, 注释掉跟版本有关的行就可. 本例子中,当用双击.sln用vs2010打开高版本的opencv项目时,会出现错误, 并且会有错误信息提示,双击该错误信息,就会打开该 ...

  4. RPC分布式处理

    RPC(远程过程调用)的应用 接触背景 因为工作上某项目的需要设计一种分布式处理耗时的运算,每个节点然后将运算结果返回给中心服务器,而最初未了解RPC这部分之前我的设计是在每一个RPC服务器上搭建一个 ...

  5. Unreal Engine 4 RenderTarget制作Live Camera效果

    Unreal Engine 4 RenderTarget制作Live Camera效果 先上效果: Live Camera我不知道怎么翻译.反正意思就是将一个摄影机的Image渲染到一个2D平面上. ...

  6. hunnu-11546--Sum of f(x)

    Sum of f(x) Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:32768KB Total submit users:  ...

  7. Java 并发编程(三)为线程安全类中加入新的原子操作

    Java 类库中包括很多实用的"基础模块"类.通常,我们应该优先选择重用这些现有的类而不是创建新的类.:重用能减少开发工作量.开发风险(由于现有类都已经通过測试)以及维护成本.有时 ...

  8. ExtJS与JQuery对照

    首先在介绍ExtJS和JQuery,然后进行比较 一个.什么是ExtJS? 1.ExtJS能够用来开发RIA也即富client的AJAX应用,是一个用javascript写的,主要用于创建前端用户界面 ...

  9. Android中TweenAnimation四种动画切换效果

    点击每个按钮都会有对应的动画显示 activity代码: package com.tmacsky; import android.app.Activity; import android.os.Bun ...

  10. 扩展WebBrowser控件,使其支持拖放文件

    public partial class UserControl1 : WebBrowser { private const int WmDropfiles = 0x233; [DllImport(& ...