treecnt
给定一棵n个节点的树,从1到n标号。选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少。
现需要计算对于所有选择k个点的情况最小选择边数的总和为多少。
样例解释:
一共有三种可能:(下列配图蓝色点表示选择的点,红色边表示最优方案中的边)
选择点{1,2}:至少要选择第一条边使得1和2联通。
选择点{1,3}:至少要选择第二条边使得1和3联通。
选择点{2,3}:两条边都要选择才能使2和3联通。
第一行两个数n,k(1<=k<=n<=100000)
接下来n-1行,每行两个数x,y描述一条边(1<=x,y<=n)
一个数,答案对1,000,000,007取模。
3 2
1 2
1 3
4
分析:对每条边算贡献即可;
当这条边有贡献时,k个点必然分布在这条边分隔开的两部分中,这里考虑用组合数计算情况数。
合法情况数=总情况数-不合法情况数。
总情况数等于C(n,k),设其中一部分点数为x,另一部分则为n-x,不合法情况数等于C(x,k)+C(n-x,k)。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <unordered_map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
#define intxt freopen("in.txt","r",stdin)
const int maxn=1e5+;
using namespace std;
int gcd(int p,int q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p%mod;p=p*p%mod;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,son[maxn];
ll fac[maxn],c[maxn],ans;
vi e[maxn];
void dfs(int now,int pre)
{
son[now]=;
for(int x:e[now])
{
if(x==pre)continue;
dfs(x,now);
son[now]+=son[x];
}
ans+=c[n]-c[son[now]]-c[n-son[now]];
ans=(ans+*mod)%mod;
}
void init()
{
fac[]=;
for(int i=;i<=maxn-;i++)fac[i]=fac[i-]*i%mod;
for(int i=m;i<=maxn-;i++)c[i]=fac[i]*qpow(fac[i-m],mod-)%mod*qpow(fac[m],mod-)%mod;
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
rep(i,,n-)scanf("%d%d",&j,&k),e[j].pb(k),e[k].pb(j);
init();
dfs(,);
printf("%lld\n",ans);
//system("Pause");
return ;
}
treecnt的更多相关文章
- 树上统计treecnt(dsu on tree 并查集 正难则反)
题目链接 dalao们怎么都写的线段树合并啊.. dsu跑的好慢. \(Description\) 给定一棵\(n(n\leq 10^5)\)个点的树. 定义\(Tree[L,R]\)表示为了使得\( ...
- [洛谷U40581]树上统计treecnt
[洛谷U40581]树上统计treecnt 题目大意: 给定一棵\(n(n\le10^5)\)个点的树. 定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边 ...
- 1677 treecnt(贡献)
1677 treecnt 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联 ...
- treecnt 算法马拉松20(告别美国大选及卡斯特罗)
treecnt 基准时间限制:1 秒 空间限制:131072 KB 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算 ...
- 51nod_1677:treecnt
题目是求一棵n节点树中对于C(n,k)颗子树,每棵子树为在n个节点中选不同的k个节点作为树的边界点,这样的所有子树共包含多少条边. 问题可以转化一下,对每一条边,不同的子树中可能包含可能不包含这条边, ...
- 51Nod 1677 treecnt
一道比较基础的计数题,还是一个常用的单独计算贡献的例子. 首先看题目和范围,暴力枚举肯定是不可行的,而且\(O(n\ logn)\)的算法貌似很难写. 那我们就来想\(O(n)\)的吧,我们单独考虑每 ...
- 51nod 1677 treecnt(思维)
题意: 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k个点的情况最小选择边数的总和为多少. 考虑每条 ...
- 【51nod1677】treecnt(树上数学题)
点此看题面 大致题意: 给你一个节点从1~n编号的树,让你从中选择k个节点并通过选择的边联通,且要使选择的边数最少,让你计算对于所有选择k个节点的情况最小选择边数的总和. 题解 这道题乍一看很麻烦:最 ...
- 【计数】51nod1677 treecnt
要将答案看做是小问题的贡献和 Description 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k ...
随机推荐
- mysql 数据库知识
order by 字段 将查到的list集合按指定字段升序排序 order by 字段 DESC 将查到的list集合按指定字段降序排序 GROUP BY 语句用于结合合计函数,根据一个或多 ...
- maven构建这么慢,怎么改变?
Apache Maven是当今非常流行的项目构建和管理工具,它把开发人员从繁杂的项目依赖关系处理事务中解放出来,完全自动化管理依赖问题.在Web应用开发过程中,通常我们会用到maven的archety ...
- CCF-CSP 最大的矩形
问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi.这n个矩形构成了一个直方图.例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3 ...
- Mac下Cordova开发环境搭建
xcode下载 从Mac App Store 下载Xcode,只需要在Store键入Xcode,下载第一个就ok了 cordova安装与配置 cordova需要node安装,使用Safari打开nod ...
- 1.1 Eclipse下载安装
可直接上官网下载:http://www.eclipse.org/downloads/ 直接下载地址:http://www.eclipse.org/downloads/download.php?file ...
- angular localStorage使用方法
var YourCtrl = function($scope, localStorageService, ...) { // To add to local storage localStorageS ...
- centos7,yum安装的redis用systemctl无法启动
因为之前使用显示命令启动redis的,要使redis在后台运行就需要改redis.conf中的daemonize 为yes. 这次在centos7上也顺手改了为yes,然后使用systemctl启动, ...
- [折腾纪实]JAVA的坑
开贴记录使用JAVA踩的坑-- P.S. 学习编程最好的方法就是用一个贴心的IDE写,然后隔着屏幕都能感觉到IDE在骂自己SB-- Overridable method calls in constr ...
- FileZilla客户端源码解析
FileZilla客户端源码解析 FTP是TCP/IP协议组的协议,有指令通路和数据通路两条通道.一般来说,FTP标准命令TCP端口号是21,Port方式数据传输端口是20. FileZilla作为p ...
- Nginx+Apache实现反向代理
一 反向代理 1.1 反向代理是什么 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器, 并将从服务器上得到的结果返回给 ...