UVA 11768 - Lattice Point or Not(数论)
UVA 11768 - Lattice Point or Not
题意:给定两个点,构成一条线段。这些点都是十分位形式的,求落在这个直线上的正数点。
思路:先把直线表达成a x + b y = c的形式,a,b, c都化为整数表示。然后利用扩展gcd求出x和y的通解,然后已知min(x1, x2) <= x <= max(x1, x2), min(y1, y2) <= y <= max(y1, y2)。这样一来就能够求出通解中t的范围,t能取的整数就是整数解。就得到答案。
值得注意的是。直线为平行坐标系的情况。要特殊推断一下
代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std; const long long INF = 0x3f3f3f3f3f3f3f;
int t;
long long xx1, yy1, xx2, yy2;
long long a, b, c; long long read(){
double t;
scanf("%lf", &t);
return (long long)(10 * (t + 0.05));
} long long gcd(long long a, long long b) {
if (!b) return a;
return gcd(b, a % b);
} long long exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {x = 1; y = 0; return a;}
long long d = exgcd(b, a % b, y, x);
y -= a / b * x;
return d;
} void build() {
a = (yy2 - yy1) * 10;
b = (xx1 - xx2) * 10;
c = (yy2 - yy1) * xx1 + (xx1 - xx2) * yy1;
long long t = gcd(gcd(a, b), c);
a /= t; b /= t; c /= t;
} long long solve() {
long long ans = 0;
long long x, y;
long long d = exgcd(a, b, x, y);
long long up = INF, down = -INF;
if (xx1 > xx2) swap(xx1, xx2);
if (yy1 > yy2) swap(yy1, yy2);
if (c % d) return ans;
if (b / d > 0) {
down = max(down, (long long)ceil((xx1 * d * 1.0 / 10 - x * c * 1.0) / b));
up = min(up, (long long)floor((xx2 * d * 1.0 / 10 - x * c * 1.0) / b));
}
else if (b / d < 0) {
up = min(up, (long long)floor((xx1 * d * 1.0 / 10 - x * c * 1.0) / b));
down = max(down, (long long)ceil((xx2 * d * 1.0 / 10 - x * c * 1.0) / b));
}
else if (xx1 % 10) return ans;
if (a / d > 0) {
down = max(down, (long long)ceil((y * c * 1.0 - d * yy2 * 1.0 / 10) / a));
up = min(up, (long long)floor((y * c * 1.0 - d * yy1 * 1.0 / 10) / a));
}
else if (a / d < 0) {
up = min(up, (long long)floor((y * c * 1.0 - d * yy2 * 1.0 / 10) / a));
down = max(down, (long long)ceil((y * c * 1.0 - d * yy1 * 1.0 / 10) / a));
}
else if (yy1 % 10) return ans;
if (down <= up)
ans += up - down + 1;
return ans;
} int main() {
scanf("%d", &t);
while (t--) {
xx1 = read(); yy1 = read(); xx2 = read(); yy2 = read();
build();
printf("%lld\n", solve());
}
return 0;
}
UVA 11768 - Lattice Point or Not(数论)的更多相关文章
- UVA 11768 Lattice Point or Not(扩展欧几里德)
将直线转化为ax + by = c的形式,然后扩展欧几里得求在[x1, x2]之间的解 对直线与坐标轴平行的特判 调试了好长时间,注意: 1 正负数转化为整型的处理 2 注意判断有无解 #includ ...
- UVA 11768 - Lattice Point or Not
首先本题需要用到扩展欧几里得算法…… 关于exgcd算法的一点简略证明: 那么,对于函数exgcd(a,b)=(d,x,y),其中d满足d=gcd(a,b); (x,y)满足ax+by=d; 则exg ...
- UVA - 11768 Lattice Point or Not (扩展欧几里得)
求一条线段上有多少个整点. 是道扩欧基础题,列出两点式方程,然后分四种情况讨论即可.但细节处理较多很容易写挫(某zzWA了十几发才过掉的). 由于数据精度较小,浮点数比较没有用eps,直接==比较了. ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- Lattice Point or Not UVA - 11768(拓展欧几里得)
原文地址:https://www.cnblogs.com/zyb993963526/p/6783532.html 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB ...
- UVa 106 - Fermat vs Pythagoras(数论题目)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVA 10831 - Gerg's Cake(数论)
UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...
- UVA 12103 - Leonardo's Notebook(数论置换群)
UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...
- UVa 1363 - Joseph's Problem(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- 重操JS旧业第三弹:Array
数组在任何编程语言中都是非常重要的,因为函数在最大程度上代表了要实现的功能,而数组则是这些函数所要操作的内存一部分. 1 构建数组 js与其他非脚本语言的灵活之处在于要实现一个目标它可能具有多种方式, ...
- android应用框架搭建------BaseActivity
网上有很多介绍BaseActivity的博文,多数是从应用的角度去描述的. 这里,我所介绍的BaseActivity不同,主要从框架搭建的角度去介绍BaseActivity的使用. 先看代码: /** ...
- 基于visual Studio2013解决C语言竞赛题之1080填运算符
题目 解决代码及点评 /************************************************************************/ /* ...
- smartforms初始化
smartforms 第一次打开的页面是和prd环境下的一样,需要跑一个程序才能编辑
- delphi指针简单入门
delphi指针简单入门: 看一个指针用法的例子: 1 var 2 X, Y: Integer; // ...
- clear_logs.py修改
#!/usr/bin/env python#encoding=utf-8"""清空最后修改时间跑今天7天以前的所有文件"""#指定监控的路径 ...
- 使用Material Design 创建App翻译系列----材料主题的使用(Using Material Theme)
上一篇是使用Material Design 创建App翻译系列--開始学习篇,进入正题: 新的材料主题提供了下面内容: 1. 提供了同意设置颜色板的系统部件组件. 2. 为这些系统组件提供了触摸反馈动 ...
- delphi 怎么将一个文件流转换成字符串(String到流,String到文件,相互转化)
//from http://kingron.myetang.com/zsfunc0d.htm (*// 标题:充分利用pascal字符串类型 说明:和PChar不同,string可以保存# ...
- (三)----使用HttpClient发送HTTP请求(分别通过GET和POST方法发送数据)
文章来源:http://www.cnblogs.com/smyhvae/p/4006009.html 一.GET和POST的对比: 在漫长的时间当中,其他的方法逐渐的退出了历史舞台,最常用的只剩下GE ...
- Org-mode五分钟教程ZZZ - Kaka Abel的日志 - 网易博客
Org-mode五分钟教程ZZZ - Kaka Abel的日志 - 网易博客 Org-mode五分钟教程ZZZ