常用函数:
det 计算矩阵的行列式的值
inv 求矩阵的逆阵
rank 求矩阵的秩
[V D]=eig(A) 求矩阵A的特征值和特征向量
poly 求矩阵的特征多项式
rref 用初等变换将矩阵化成行阶梯形
null(A,’r’) 给出齐次线性方程组Ax=0 的基础解系
fliplr 矩阵左右翻转
flipud 矩阵上下翻转
trace 求矩阵的迹
diag 取得矩阵对角线元素

例子:
1、矩阵函数的应用
A=[3 -4 0; -1 5 2; 4 1 -6]
det (A) %求矩阵的行列式的值
rank (A) %求矩阵的秩
inv (A) %求逆矩阵

2、求解线性方程组Ax=B
A=[3 -4 0; -1 5 2; 4 1 -6];
B=[5;5;16];
解法1 利用矩阵除法: X=A\B
解法2 利用求逆矩阵函数 inv:X1=inv(A)*B
比较:解法1比解法2更简便,
解法1 的算法优于解法2 ,
解法1可用于一般矩阵,而解法2只能用于非奇异的方阵
因此,只需运用解法1 .

3 求线性方程组的通解

3.1 利用除法\和null函数
A=[1 1 -1 -1;2 -5 3 2; 7 -7 3 1];
B=[5;-4;7];
format rat
x1=A\B %求得非齐次方程组Ax=B的一个特解x1
Y=null(A,'r') %求得齐次方程组Ax=0 的基础解系Y
输出结果:
x1 =

3
2
0
0

Y =

2/7 3/7
5/7 4/7
1 0
0 1
则方程组Ax=B的通解为: x=x1+k1*Y(:,1)+k2*Y(:,2)

3.2 利用rref函数
format rat
A=[1 1 -1 -1;2 -5 3 2;7 -7 3 1];
B=[5; -4; 7];
%用初等行变换将增广矩阵 [A B] 化成最简行阶梯形T
T=rref([A B])
输出结果:
T =

1 0 -2/7 -3/7 3
0 1 -5/7 -4/7 2
0 0 0 0 0

Matlab - 线性方程组求解的更多相关文章

  1. matlab中求解线性方程组的rref函数

    摘自:http://www.maybe520.net/blog/987/ matlab中怎么求解线性方程组呢? matlab中求解线性方程组可应用克拉默法则(Cramer's Rule)即通过det( ...

  2. MATLAB线性方程组的迭代求解法

    MATLAB线性方程组的迭代求解法 作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 一.实验目的 1. 借助矩阵按模最大特征值,判断解方程组的Jacobi ...

  3. Matlab学习——求解微分方程(组)

    介绍: 1.在 Matlab 中,用大写字母 D 表示导数,Dy 表示 y 关于自变量的一阶导数,D2y 表示 y 关于自变量的二阶导数,依此类推.函数 dsolve 用来解决常微分方程(组)的求解问 ...

  4. poj 2891 模线性方程组求解

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8005   ...

  5. MATLAB符号求解极限积分微分级数2

    一.符号表达式的极限 limit(F,x,a):求当时,符号表达式F的极限. limit(F,a):符号表达式F采用默认自变量(可由函数findsym求得),该函数求F的自变量趋于a时的极限值. li ...

  6. 开源Math.NET基础数学类库使用(06)数值分析之线性方程组直接求解

    原文:[原创]开源Math.NET基础数学类库使用(06)数值分析之线性方程组直接求解 开源Math.NET基础数学类库使用系列文章总目录:   1.开源.NET基础数学计算组件Math.NET(一) ...

  7. 【原创】开源Math.NET基础数学类库使用(06)直接求解线性方程组

                   本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新  开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...

  8. python 求解线性方程组

    Python线性方程组求解 求解线性方程组比较简单,只需要用到一个函数(scipy.linalg.solve)就可以了.比如我们要求以下方程的解,这是一个非齐次线性方程组: 3x_1 + x_2 - ...

  9. MATLAB命令大全

    一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos ...

随机推荐

  1. ios 状态码

    9001 无网络 9002 url错误 9003 链接超时 9005 json解析错误 9503 503 error

  2. LED :制作一个追逐序列(霹雳游侠)

    ; ,,}; ; void setup() { ; led<NbrLeds; led++){ pinMode(ledPins[led], OUTPUT); } } void loop() { ; ...

  3. java基础3

    包装类:

  4. 【IE6的疯狂之十】父级使用padding后子元素绝对定位的BUG

    在前端开发中,经常会用到css的position:absolute来使层浮动,前通过left,top,right等属性来对层进行定位,但ie6对left,top,right等属性的解释和ie7,ie8 ...

  5. CF Round #355 Div.2

    http://codeforces.com/contest/677 B. Vanya and Food Processor 题意:有一个食物加工器,每次能加工不超过h高度的土豆,且每秒加工至多k高度的 ...

  6. Form提交时隐藏Token验证

    前端声称一个Token @Html.AntiForgeryToken() 后台对Token进行验证 AntiForgery.Validate();

  7. 建立tcl文件

  8. 5、sha1加密的一个坑

    OC语言写的sha1加密算法,在网上随手可以搜索到(如下便是),但是我不得不说有一些人不责任,没有提醒大家导入必要的系统头文件,从而导致错误 + (NSString *) sha1:(NSString ...

  9. 用Karma和Jasmine测试Angular应用

    TEST: Before you've written any of the code, you know how you want it to behave. You have a specific ...

  10. qemu毒液漏洞分析(2015.9)

    0x00背景 安全娱乐圈媒体Freebuf对该漏洞的有关报道: 提供的POC没有触发崩溃,在MJ0011的博客给出了修改后可以使qemu崩溃的poc.详见: http://blogs.360.cn/b ...