BZOJ 1449 JSOI2009 球队收益 费用流
题目大意:给定n支球队。第i支球队已经赢了wini场。输了losei场,接下来还有m场比赛。每一个球队终于的收益为Ci∗x2i+Di∗y2i,当中xi为终于的胜场,yi为终于的负场
求最小化收益
考虑一仅仅球队,其收益与在接下来的比赛中的胜场数关系为:
赢0场 Ci∗win2i+Di∗(di+losei)2
赢1场 Ci∗(wini+1)2+Di∗(di+losei−1)2
赢2场 Ci∗(wini+2)2+Di∗(di+losei−2)2
…
赢di场 Ci∗(wini+di)2+Di∗lose2i
差分后可得:
赢第1场 Ci∗(2∗wini+1)−Di∗[2∗(di+losei)−1]
赢第2场 Ci∗(2∗wini+3)−Di∗[2∗(di+losei)−3]
…
赢第di场 Ci∗[2∗wini+(2∗di−1)]−Di∗[2∗(di+losei)−(2∗di−1)]
easy发现差分后单调递增。故收益是关于胜场数的一个下凸函数,能够拆边做
于是我们将每支球队和每场比赛都变成一个点,建图跑费用流
源点向第i个点连di条边。流量为1。第j条边的费用为Ci∗[2∗wini+(2∗j−1)]−Di∗[2∗(di+losei)−(2∗j−1)]
每场比赛的两方向这场比赛连一条流量为1费用为0的边
每场比赛向汇点连一条流量为1费用为0的边
最小费用+∑ni=1[Ci∗win2i+Di∗(di+losei)2]就是答案
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 6060
#define S 0
#define T (M-1)
#define INF 0x3f3f3f3f
using namespace std;
int n,m,ans;
int win[M],lose[M],C[M],D[M],d[M];
namespace Min_Cost_Max_Flow{
struct abcd{
int to,flow,cost,next;
}table[1001001];
int head[M],tot=1;
void Add(int x,int y,int f,int c)
{
table[++tot].to=y;
table[tot].flow=f;
table[tot].cost=c;
table[tot].next=head[x];
head[x]=tot;
}
void Link(int x,int y,int f,int c)
{
Add(x,y,f,c);
Add(y,x,0,-c);
}
bool Edmonds_Karp()
{
static int q[65540],cost[M],flow[M],from[M];
static unsigned short r,h;
static bool v[M];
int i;
memset(cost,0x3f,sizeof cost);
cost[S]=0;flow[S]=INF;q[++r]=S;
while(r!=h)
{
int x=q[++h];v[x]=false;
for(i=head[x];i;i=table[i].next)
if(table[i].flow&&cost[table[i].to]>cost[x]+table[i].cost)
{
cost[table[i].to]=cost[x]+table[i].cost;
flow[table[i].to]=min(flow[x],table[i].flow);
from[table[i].to]=i;
if(!v[table[i].to])
v[table[i].to]=true,q[++r]=table[i].to;
}
}
if(cost[T]==0x3f3f3f3f) return false;
ans+=cost[T]*flow[T];
for(i=from[T];i;i=from[table[i^1].to])
table[i].flow-=flow[T],table[i^1].flow+=flow[T];
return true;
}
}
int main()
{
using namespace Min_Cost_Max_Flow;
int i,j,x,y;
cin>>n>>m;
for(i=1;i<=n;i++)
scanf("%d%d%d%d",&win[i],&lose[i],&C[i],&D[i]);
for(i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
Link(x,n+i,1,0);
Link(y,n+i,1,0);
Link(n+i,T,1,0);
d[x]++;d[y]++;
}
for(i=1;i<=n;i++)
{
ans+=C[i]*win[i]*win[i]+D[i]*(d[i]+lose[i])*(d[i]+lose[i]);
for(j=1;j<=d[i];j++)
Link(S,i,1, C[i]*(2*win[i]+j*2-1)-D[i]*(2*(d[i]+lose[i])-j*2+1) );
}
while( Edmonds_Karp() );
cout<<ans<<endl;
return 0;
}
BZOJ 1449 JSOI2009 球队收益 费用流的更多相关文章
- BZOJ 1449: [JSOI2009]球队收益( 最小费用最大流)
先考虑假如全部输了的收益. 再考虑每场比赛球队赢了所得收益的增加量,用这个来建图.. --------------------------------------------------------- ...
- bzoj 1449 [JSOI2009]球队收益(费用拆分,最小费用流)
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 547 Solved: 302[Submit][Status][ ...
- BZOJ 1449: [JSOI2009]球队收益 最小费用最大流 网络流
https://www.lydsy.com/JudgeOnline/problem.php?id=1449 给每条路加上一个权值,每条路的费用是这条路的流量*权值,求最大流的最小费用. 每次spfa记 ...
- [bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...
- 【BZOJ 1449】 1449: [JSOI2009]球队收益 (最小费用流)
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 841 Solved: 483 Description Inpu ...
- 1449: [JSOI2009]球队收益
1449: [JSOI2009]球队收益 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 757 Solved: 437[Submit][Status][ ...
- bozj 1449/2895: 球队预算 -- 费用流
2895: 球队预算 Time Limit: 10 Sec Memory Limit: 256 MB Description 在一个篮球联赛里,有n支球队,球队的支出是和他们的胜负场次有关系的,具体 ...
- 【BZOJ1449】[JSOI2009]球队收益(网络流,费用流)
[BZOJ1449][JSOI2009]球队收益(网络流,费用流) 题面 BZOJ 洛谷 题解 首先对于一支队伍而言,总共进行多少场比赛显然是已知的,假设是\(n_i\)场,那么它的贡献是:\(C_i ...
- BZOJ1449[JSOI2009]球队收益&BZOJ2895球队预算——最小费用最大流
题目描述 输入 输出 一个整数表示联盟里所有球队收益之和的最小值. 样例输入 3 3 1 0 2 1 1 1 10 1 0 1 3 3 1 2 2 3 3 1 样例输出 43 提示 要求总费用最低 ...
随机推荐
- Web API设计
Web API设计经验与总结 在移动互联网的时代, Web服务已经成为了异构系统之间的互联与集成的主要手段,各种 Web服务几乎都采用REST风格的Web Api来构建. 通过Http协议的形式来. ...
- 8个实用的SVG工具,20 个有用的 SVG 工具,五款超实用的开源SVG工具
8个实用的SVG工具 [导读] 你还在为没有好用的SVG工具而发愁吗?开发人员的福音来啦!小编为大家收集罗列了8款实用的SVG工具,让我们一起来看看吧! SVG可缩放矢量图形(Scalable Vec ...
- HttpClient使用详解
http://itindex.net/detail/52566-httpclient HttpClient使用详解 标签: httpclient | 发表时间:2015-01-22 12:07 | 作 ...
- NDK-gdb的错误ERROR(不同于上一篇): Could not extract package's data directory...的解决方法
这个问题比较龟毛. 我的系统在4.0.4上一直调试好好的,到了2.2的系统居然fail.能检查的地方全部检查过了,居然不行. 最后仔细差了一遍,居然是由于/data目录的属性是777导致.ndk-gd ...
- 常见问题(FAQ) | VPNCUP
常见问题(FAQ) | VPNCUP 常见问题(FAQ) 关于FAQ 新手开始 登录验证问题 为什么刚注册后,登录VPN服务器提示错误? 免费注册的用户有哪些限制? 为什么连接免费VPN后20分钟自动 ...
- 找工作笔试面试那些事儿(8)---常问的CC++基础题
这一部分是C/C++程序员在面试的时候会被问到的一些题目的汇总.来源于基本笔试面试书籍,可能有一部分题比较老,但是这也算是基础中的基础,就归纳归纳放上来了.大牛们看到一笑而过就好,普通人看看要是能补上 ...
- Routing 服务
WCF Routing 服务 WCF4.0支持路由机制,通过RoutingService实现请求分发.拦截处理. 一.应用场景 1.暴露一个endpoint在外网,其余服务部署于内网: 2.请求分发, ...
- PV(访问量)、UV(独立访客)、IP(独立IP) (转)
网站统计中的PV(访问量):UV(独立访客):IP(独立IP)的定义与区别今天使用了雅虎统计,看到里面就有这个,就说说,其实里面的uv大家可能觉得很新奇,但是和站长统计里的独立访客是一样的嘛.---- ...
- 杭州电ACM1098——Ignatius's puzzle
这个话题.简单的数学. 对于函数,f(x)=5*x^13+13*x^5+k*a*x,输入k,对于休闲x,一个数字的存在a,使f(x)是65可分. 对于休闲x. 因此,当x = 1时间,f(x) = 1 ...
- sql优化-提防错误关联
在写sql时,在多表关联时,有时候容易把关联关系写错.一般情况下,该问题比较容易发现,但如果sql较长时,光靠眼力就比较难发现了.今天写了一个脚本,碰到该问题了. 第一版本的脚本如下: select ...