当我们在谈论kmeans(3)
本系列意在长期连载分享,内容上可能也会有所删改;
因此如果转载,请务必保留源地址,非常感谢!
博客园:http://www.cnblogs.com/data-miner/(暂时公式显示有问题)
其他:建设中…
当我们在谈论kmeans:论文概述(2)
算法历程
2001年
在Estlick, Mike, et al. "Algorithmic transformations in the implementation of K- means clustering on reconfigurable hardware." 2001中,作者将K-means算法用在FPGA板子中。在传统K-means中,用到了浮点数运算与乘法运算,而这两种运算在FPGA中非常耗时。为了能在FPGA中高效使用K-means算法,作者提出了修改的K-means算法。
先介绍一下明氏距离(Minkowski Distance),其定义如下
- 如果令p=2,即得到常见的欧氏距离(Euclidean Distance);从概率的角度看,欧氏距离即认为数据服从标准多维正态分布,其概率密度函数中,欧氏距离描述的就是空间中的点偏离中心的概率,相同的欧氏距离即对应着概率密度函数的等高线
- 如果令p=0,即得到曼哈顿距离(Manhattan Distance),即每个维度的绝对值的和;当计算像素欧氏距离复杂度较高,有时候可以使用曼哈顿距离作为替代
- 令p→∞,即切比雪夫距离(Chebyshev Distance),即取不同纬度间的最大值;不过我也不知道什么时候会用上它
- 在此我们可以再总结一些常见的距离度量,如马氏距离(MahalanobisDistance);从概率角度看,其作用就是用多维正态分布拟合数据,描述的同样是空间中的点偏离中心的概率,相同的马氏距离即对应着概率密度函数的等高线
- 余弦相似度(Cosine Similarity),描述的是两个向量的夹角大小
- Jaccard相似系数(Jaccard Coefficient),描述的是两个集合的相似性
- 如果令p=2,即得到常见的欧氏距离(Euclidean Distance);从概率的角度看,欧氏距离即认为数据服从标准多维正态分布,其概率密度函数中,欧氏距离描述的就是空间中的点偏离中心的概率,相同的欧氏距离即对应着概率密度函数的等高线
作者表示在FPGA中,欧氏距离的计算量太大,他希望用“曼哈顿距离”和“切比雪夫距离”替代。下图表示,空间中两个聚类中心,使用不同距离的分界面
单独使用“曼哈顿距离”和“切比雪夫距离”都无法很好地替代“欧氏距离”,于是作者将两者融合,并说明效果的下降在允许范围内,而计算量大大降低。(想法很有趣)
2002年
在Kanungo, Tapas, et al. "An Efficient k-Means Clustering Algorithm: Analysis and Implementation." 2002中,面对K-means运算量较大的问题,作者提出了“KD树”加速K-means算法的方法。
但是,其方法基本跟Pelleg, et al. "Accelerating exact k -means algorithms with geometric reasoning." 1999.没什么区别。此处不再赘述。
2004年
在Lee, Sangkeun, and M. H. Hayes. "Properties of the singular value decomposition for efficient data clustering." 2004中,作者对SVD的性质进行了讨论,并表示这些性能能加快K-means的过程。
作者首先给出了对数据集A进行SVD的解释
然后给出了本文最主要的公式,即A中每两个向量的欧氏距离,可以用对应的“右奇异向量”的加权和表示。(注:这里我们进一步分析,由于A是一个m∗n的矩阵,V是一个n∗n的矩阵,若要SVD分解后能加速K-means,至少要求m>n,即样本维数大于样本数量,然而这种情况比较少见。同时,SVD分解本身也是个非常耗时的操作。因此此方法更多的是提供一种思考方式。)
本文还给出了一种设置聚类中心数量K的方法。本质跟PCA类似,就是计算数据集A的主要能量聚集在多少维度上。区别是PCA需要的是这几个维度对应的向量,而这里只需要维度的数量。
文中还有更多利用SVD加速K-means聚类的细节,不再赘述
2005年
在Huang, Joshua Zhexue, et al. "Automated Variable Weighting in k-Means Type Clustering." 2005中,作者针对K-means算法中,每一维特征在聚类结果中权重相同的情况,提出了修改的K-mwans。
作者首先提出,在数据挖掘过程中,往往数据的维数都是成百上千,而其中对分析有意义的维数只是部分。以往根据经验给每一维数据赋权重,作者提出一种算法来自动求出权重。
先给出原始K-means的损失函数,即最小均方误差
然后作者给出修改的K-means的损失函数。本质就是在损失函数里增加了权重,然后继续通过EM算法求解。在最小均方误差的约束下,类内距离小的那一维特征会被赋予较大的权重,类内距离较大的则会被赋予较小的权重。即作者所说的,自动求解权重
关于详细的求解步骤,与收敛性的证明,可以参考原论文
2006年
在Kuncheva, L. I., and D. P. Vetrov. "Evaluation of Stability of k-Means Cluster Ensembles with Respect to Random Initialization." 2006中,作者研究了通过Ensembling来提升K-means等算法的稳定性
作者先明确了研究的问题,即
- Ensembling是否能提升聚类的稳定性?
- 是否聚类的稳定性能与准确性正相关?
- 是否能利用聚类稳定性指标来描述聚类的有效性?
作者给出了Ensembling的方法,即把数据分成L组,再分别对L组的数据进行聚类,并将结果融合
对于上述问题,作者都没有给出理论证明,都是实验上的说明:
- Ensembling是否能提升聚类的稳定性?
大部分情况下,Ensembling能提升聚类的稳定性。同时需要说明的是,Ensembling更稳定的情况基本发生在聚类中心较大的时候,即Ensembling会倾向于选择更多的聚类中心 - 是否聚类的稳定性能与准确性正相关?
跟设想的结果差不多,聚类的稳定性跟准确性并没有明确的正相关。不同的数据集上,有着完全不同的相关性。 - 是否能利用聚类稳定性指标来描述聚类的有效性?
在这部分,作者主要阐述了利用聚类稳定性指标来选择聚类中心数量的想法。即,作者通过给出一个稳定性指标,表示在稳定性较大的时候的聚类中心数量会很接近真实的类别数量。
- Ensembling是否能提升聚类的稳定性?
2007年
在Arthur, David, and S. Vassilvitskii. "k-means++: the advantages of careful seeding." 2015中,作者提出了K-means++算法,也是较为常用的K-means修改算法之一。这个算法主要提出了一种选择初始化聚类中心的方法,并从理论上证明了这个方案会使收敛更快,且效果更好
- 这个初始化聚类中心的方法其实很简单:即以概率的形式逐个选择聚类中心,并在选择聚类中心时,给距离较远的点更高的权重,即更容易被选择为聚类中心
- 这个想法其实并不是非常新奇,这种逐个选择聚类中心的思想,在1997年就有作者提出过(参考“当我们在谈论kmeans:论文概述(1),1997”)。但是作者在这个初始化聚类中心方法的基础上,接下来又证明了通过这种方法,平均均方误差大大降低,且收敛速度更快。证明过程好复杂,大家可以自己去研读。
2010年
在Chiang, Ming Tso, and B. Mirkin. "Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads." 2010中,针对K-means算法中聚类中心数量难以确定的问题,作者通过实验的方式,比较了多种估计K-means聚类中心数量的方法。并通过实验对比了这些方法在估计类别数量、中心、标记时的准确度。
- 作者首先介绍了Mirkin提出的Intelligent K-means算法,本质是通过异常检测的思想,一步步确定每个类别。具体描述如下
为了选择对照算法,作者总结了其他估计聚类数量K的算法。针对不同类型的方法,作者也给出了例子。有兴趣的同学可以参考原文。
基于变化的算法:即定义一个函数,认为在正确的K时会产生极值。
基于结构的算法:即比较类内距离、类间距离以确定K。
基于一致性矩阵的算法:即认为在正确的K时,不同聚类的结果会更加相似,以此确定K。
基于层次聚类:即基于合并或分裂的思想,在一定情况下停止获得K。
基于采样的算法:即对样本采样,分别做聚类;根据这些结果的相似性确定K。
最后通过对比实验,作者给出结论认为Intelligent K-means能较为有效的估计真实聚类中心、以及样本所属类别。同时,Intelligent K-means对类别数量的估计普遍较大。不过由于实验是在高斯分布的仿真实验下进行的,结论并非我所关注,不再赘述。
当我们在谈论kmeans(3)的更多相关文章
- 当我们在谈论kmeans(1)
本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 简书:建设中... 知乎:建设中... 当我们在谈论 ...
- 当我们在谈论kmeans(2)
本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...
- 当我们在谈论kmeans(5)
本系列意在长期连载分享,内容上可能也会有所删改: 因此如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/(暂时公式显示有问题) 其他: ...
- K-Means 聚类算法
K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...
- 用scikit-learn学习K-Means聚类
在K-Means聚类算法原理中,我们对K-Means的原理做了总结,本文我们就来讨论用scikit-learn来学习K-Means聚类.重点讲述如何选择合适的k值. 1. K-Means类概述 在sc ...
- K-Means聚类算法原理
K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体 ...
- [Erlang 0117] 当我们谈论Erlang Maps时,我们谈论什么 Part 2
声明:本文讨论的Erlang Maps是基于17.0-rc2,时间2014-3-4.后续Maps可能会出现语法或函数API上的有所调整,特此说明. 前情提要: [Erlang 0116] 当我们谈论E ...
- [Erlang 0116] 当我们谈论Erlang Maps时,我们谈论什么 Part 1
Erlang 增加 Maps数据类型并不是很突然,因为这个提议已经进行了2~3年之久,只不过Joe Armstrong老爷子最近一篇文章Big changes to Erlang掀起不小了风 ...
- kmeans算法并行化的mpi程序
用c语言写了kmeans算法的串行程序,再用mpi来写并行版的,貌似参照着串行版来写并行版,效果不是很赏心悦目~ 并行化思路: 使用主从模式.由一个节点充当主节点负责数据的划分与分配,其他节点完成本地 ...
随机推荐
- android:由URL载入中ImageView
两种方法: 方法一: Bitmap bimage= getBitmapFromURL(bannerpath); image.setImageBitmap(bimage); public static ...
- CSS移动
#hand { width: 170px; height: 236px; position: absolute; top: 178px; left: 390px; background: url('h ...
- Inno Setup connection to the database and create
原文 Inno Setup connection to the database and create Description: the first half of this program in I ...
- C#使用Thrift简介,C#客户端和Java服务端相互交互
C#使用Thrift简介,C#客户端和Java服务端相互交互 本文主要介绍两部分内容: C#中使用Thrift简介 用Java创建一个服务端,用C#创建一个客户端通过thrift与其交互. 用纯C#实 ...
- mysql 安装后无法登陆mysql的 shell 那mysql>经验:ERROR 1045 (28000): Access denied for user 'root'@'localhost‘
[root@hzswtb2-mpc ~]# mysql ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using pas ...
- 赠书《JavaScript高级程序设计(第三版)》5本
本站微博上正在送书<JavaScript高级程序设计>走过路过的不要错过,参与方式,关注本站及简寻网+转发微博:http://weibo.com/1748018491/DoCtp6B8r ...
- 真与假与c#,java中的不同之处
/************真与假************/ /*C语言中:真(非0).假(0) * Java.C#中:真(true).假(false) * JavaScript中:真(非0.true. ...
- GIT+云盘作 做 文档管理工具
GIT+云盘作 做 文档管理工具 在工作中, 会遇到公司的文档 和 自己家里的 文档进行同步的问题, 通常我们使用U盘作为传输节制, 但是不是非常好,文档的改动都不能发现, 导致回家同步的时候, 出各 ...
- ExtJs之表格控件入门
extjs的表格功能非常强大,包括了排序,缓存,拖动,隐藏某一列,自动显示行号,列汇总,单元格编辑等实用功能.表格由类Ext.grid.GridPanel定义,继承自Panel,其xtype为grid ...
- In C# 代码实现
SOLID 设计原则 In C# 代码实现 [S] Single Responsibility Principle (单一职责原则) 认为一个对象应该仅只有一个单一的职责 namespace Si ...