G - 中国剩余定理

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d
& %I64u

Description

Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one
peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier. 

Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will
be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine
the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give
the number of days to the next occurrence of a triple peak. 

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles
peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by
a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form: 



Case 1: the next triple peak occurs in 1234 days. 



Use the plural form ``days'' even if the answer is 1.

Sample Input

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days.

中国剩余定理,又叫做孙子定理,是数论比較重要的定理:

给你正整数a1,a2,a3,b1,b2,b3,bi是ai相应的X取余,且Xmod ai = bi,中国剩余定理让求的就是X的值,求X(最小)的时候,运用中国剩余定理能够大大缩短时间;

先说明一个定理,这也是剩余定理的核心定理:

X1 mod a1 = b1;

X2 mod a2 = b2;

若X1 ,X2均为 最小值,那么X1+X2也是最小值,而且(X1+X2) =(这里是恒等,打不出来。。)bi (mod ai),能看出来,这是中国剩余定理的公式。这里不加证明,由于须要证明同余方程的线性运算的正确性。

因此,中国剩余定理的意义也就非常明显了:求每一对同余方程的值。

每个值的求法须要明白它的意义才干找出来;

对于每一个值,须要Xi mod aj (!=i)==0&&Xi mod ai = bi;

为什么要等于0呢,对于当前值,没有这个要求,可是对于最后的值,我们要求的是对每个子例子,满足线性同余方程,这里用反证法证明:

如果每个不满足仅仅对当前的值满足余数唯一,对其它值有余数,那么最后的值仍有这个性质,但最后的值仍然对这个其它的值有正确值,矛盾,如果不成立。

到这里,须要证明的所有完毕。

那么怎样求呢:

既然是最小的而且有约束条件,那么就从约束条件进行下手:

用到的老师刚讲的求模的一个线性运算(a * b )%c = (a%c*b%c)%c;

所以我们将Xi分解成k and n;

n = bi,so a%c = 1,and a%aj ==0 && a %c = 1;

and we should get a is the least ,we know the CRT is concernd by prime number which is ai,in other words,all the data is gcd(ai,aj) = 1,so make a circle to get k.

follow is code :

#include<cstdio>
using namespace std;
int main(void)
{
int p, e, i, d, icase = 1;
while (scanf("%d%d%d%d", &p, &e, &i, &d), ~p)
{
int n = (5544 * p + 14421 * e + 1288 * i - d + 21252) % 21252;
if (n == 0)
n = 21252;
printf("Case %d: the next triple peak occurs in %d days.\n",icase++,n);
}
return 0;
}

CRT的更多相关文章

  1. An error occurred during the installation of assembly 'Microsoft.VC90.CRT……的问题

    有一段时间没有用到AnkhSvn了,今天工作需要安装了一下.结果安装到一半就无法继续了,提示An error occurred during the installation of assembly ...

  2. openssl、x509、crt、cer、key、csr、ssl、tls 这些都是什么鬼?

    今天尝试在mac机上搭建docker registry私有仓库时,杯具的发现最新的registry出于安全考虑,强制使用ssl认证,于是又详细了解linux/mac上openssl的使用方法,接触了一 ...

  3. [老文章搬家] [翻译] 深入解析win32 crt 调试堆

    09 年翻译的东西. 原文见:  http://www.nobugs.org/developer/win32/debug_crt_heap.html 在DeviceStudio的Debug编译模式下, ...

  4. 那些证书相关的玩意儿(SSL,X.509,PEM,DER,CRT,CER,KEY,CSR,P12等)

    之前没接触过证书加密的话,对证书相关的这些概念真是感觉挺棘手的,因为一下子来了一大堆新名词,看起来像是另一个领域的东西,而不是我们所熟悉的编程领域的那些东西,起码我个人感觉如此,且很长时间都没怎么搞懂 ...

  5. Linux-1:安装&忘记密码&CRT连接centos 6.5

    我是在虚拟机VM安装的centos 6.5 一.Linux安装 Ctrl + Alt:鼠标退出LINUX界面 安装我是参考,当然也可以根据网上教程安装:http://oldboy.blog.51cto ...

  6. IIS部署SSL,.crt .key 的证书,怎么部署到IIS,记录一下,以免忘记。

    SSL连接作用不说,百度很多.因为最近想考虑重构一些功能,在登录这块有打算弄成HTTPS的,然后百度了,弄成了,就记录一下,以便以后万一部署的时候忘记掉. 做实验的时候,拿的我个人申请的已经备案的域名 ...

  7. glibc与MSVC CRT(转载)

    glibc与MSVC CRT 运行库是平台相关的,因为它与操作系统结合得非常紧密.C语言的运行库从某种程度上来讲是C语言的程序和不同操作系统平台之间的抽象层,它将不同的操作系统API抽象成相同的库函数 ...

  8. CRT 和mysql 中文乱码解决方式

    mysql 安装mysql 1. 使用root用户: su root 2. 安装 yum install mysql yum install mysql-server yum install mysq ...

  9. 有了这个,再也不用每次连新机器都要设置secure crt属性了

    我连服务器用的是secure crt,每次ssh新服务器的时候都得手动设置字符编码和背景颜色,今天问了旁边的开发原来可以全局设置,以后连服务器的时候就再也不用手动设置相关属性了.步骤如下: 一开始点击 ...

  10. error setting certificate verify locations: CAfile: E:/git/Git/mingw64/ssl/certs/ca-bundle.crt

    一.问题: 当git clone项目时报 error setting certificate verify locations: CAfile: E:/git/Git/mingw64/ssl/cert ...

随机推荐

  1. SQL Server审计功能入门:CDC(Change Data Capture)

    原文:SQL Server审计功能入门:CDC(Change Data Capture) 介绍 SQL Server 2008引入了CDC(Change Data Capture),它能记录: 1. ...

  2. 策略模式设计模式(Strategy)摘录

    23种子GOF设计模式一般分为三类:创建模式.结构模型.行为模式. 创建模式抽象的实例.一个系统独立于怎样创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将 ...

  3. Dynamic proxy

    import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.lang.reflec ...

  4. Linux内核分析(一)---linux体系简介|内核源码简介|内核配置编译安装

    原文:Linux内核分析(一)---linux体系简介|内核源码简介|内核配置编译安装 Linux内核分析(一) 从本篇博文开始我将对linux内核进行学习和分析,整个过程必将十分艰辛,但我会坚持到底 ...

  5. POJ 2777 Count Color(段树)

    职务地址:id=2777">POJ 2777 我去.. 延迟标记写错了.标记到了叶子节点上.. . . 这根本就没延迟嘛.. .怪不得一直TLE... 这题就是利用二进制来标记颜色的种 ...

  6. about greenplum collection tool

    three collection tool for greenplum:pstack.strace.gcore.                                            ...

  7. Win7安装和配置Tigase 5.2server

    Win7安装和配置Tigaseserver 笔者:chszs,转载注明. 博客首页:http://blog.csdn.net/chszs 1.下载tigase-server-5.2.0-b3447.e ...

  8. ASP.NET MVC+EF框架+EasyUI实现权限管理系列(16)-类库架构扩展以及DLL文件生成修改和用户的简单添加

    原文:ASP.NET MVC+EF框架+EasyUI实现权限管理系列(16)-类库架构扩展以及DLL文件生成修改和用户的简单添加 ASP.NET MVC+EF框架+EasyUI实现权限管系列 (开篇) ...

  9. NYoj 部分和问题(深搜经典)

    题目链接: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=1058 #include <stdio.h> ], vis[], co ...

  10. Android中适用于ListView、GridView等组件的通用Adapter

    今天随便逛逛CSDN,看到主页上推荐了一篇文章Android 高速开发系列 打造万能的ListView GridView 适配器,刚好这两天写项目自己也封装了相似的CommonAdapter,曾经也在 ...