in和exists哪个效率高本人测试证明
in和exists哪个效率高本人测试证明
SQLSERVR语句 in和exists哪个效率高自己测试本人测试证明
最近很多人讨论in和exists哪个效率高,今天就自己测试一下
我使用的是客户的数据库GPOSDB(已经有数据)
环境:SQLSERVER2005 Windows7
我的测试条件:两个表作连接根据VC_IC_CardNO字段,查出CT_InhouseCard表中的VC_IC_CardNO(卡号)在CT_FuelingData表中存在的记录
前提:某些人可能在SQL语句中有多个in,或者多个exists,这些情况很难测试效率的,因为大家的条件都不相同
例如下面两个SQL语句

1 SELECT OrderNo, SiteCode, AreaCode
2 FROM SchedulingProgram
3 WHERE AreaCode IN ( 'P', 'M' ) AND SiteCode IN ( SELECT SiteCode
4 FROM EnvBasicInfo
5 WHERE cityiD = 31 ) AND OrderNo NOT IN (
6 SELECT OrderNo
7 FROM KK_DeliveryinfoTmp )

上面SQL语句IN里面有IN和NOT IN

1 SELECT OrderNo, SiteCode, AreaCode
2 FROM SchedulingProgram
3 WHERE ( AreaCode IN ( 'P', 'M' ) AND SiteCode IN ( SELECT SiteCode
4 FROM EnvBasicInfo
5 WHERE cityiD = 31 )
6 ) AND NOT EXISTS ( SELECT OrderNo
7 FROM KK_DeliveryinfoTmp
8 WHERE KK_DeliveryinfoTmp.OrderNo = SchedulingProgram.OrderNo )

上面的SQL语句IN里面又有NOT EXISTS
这样的情况很难测试同等条件下IN语句和EXISTS语句的效率
还有一个非SARG运算符
在《SQLSERVER企业级平台管理实践》的第424页里提到:
SQLSERVER对筛选条件(search argument/SARG)的写法有一定的建议
对于不使用SARG运算符的表达式,索引是没有用的,SQLSERVER对它们很难使用比较优化的做法。非SARG运算符包括
NOT、<>、NOT EXISTS、NOT IN、NOT LIKE和内部函数,例如:Convert、Upper等
所以当您的表中有索引并且SQL语句包含非SARG运算符,那么当测试SQL语句的执行时间的时候肯定相差很大,
因为有些SQL语句走索引,有些SQL语句不走索引
建表脚本
注意:两个表中都有索引!!
CT_FuelingData表

1 USE [GPOSDB]
2 GO
3 /****** 对象: Table [dbo].[CT_FuelingData] 脚本日期: 08/24/2013 11:00:34 ******/
4 SET ANSI_NULLS ON
5 GO
6 SET QUOTED_IDENTIFIER ON
7 GO
8 SET ANSI_PADDING ON
9 GO
10 CREATE TABLE [dbo].[CT_FuelingData](
11 [RecordNO] [int] IDENTITY(1,1) NOT NULL,
12 [I_FD_StationNo] [int] NOT NULL,
13 [VC_FD_No] [varchar](50) NOT NULL,
14 [VC_FD_Cardno] [varchar](50) NOT NULL,
15 [I_FD_CardStatus] [int] NULL,
16 [LI_FD_CTC] [bigint] NOT NULL,
17 [I_FD_TypeCode] [int] NULL,
18 [I_FD_PumpID] [int] NOT NULL,
19 [VC_FD_OilType] [varchar](50) NULL,
20 [DE_FD_Volume] [decimal](18, 2) NULL,
21 [DE_FD_Price] [decimal](18, 2) NULL,
22 [DE_FD_Amount] [decimal](18, 2) NULL,
23 [I_FD_Point] [decimal](10, 2) NULL,
24 [D_FD_DateTime] [datetime] NOT NULL,
25 [VC_FD_GroupNo] [varchar](50) NULL,
26 [D_FD_GroupDate] [datetime] NULL,
27 [DE_FD_CardAmount] [decimal](18, 2) NULL,
28 [DE_FD_VolumeTotals] [decimal](18, 2) NULL,
29 [DE_FD_AmountTotals] [decimal](18, 2) NULL,
30 [I_FD_ISSend] [int] NULL,
31 [VC_FD_CardMoneyauthFile] [varchar](50) NULL,
32 [D_Month] [datetime] NULL,
33 CONSTRAINT [PK_CT_FuelingData_1] PRIMARY KEY CLUSTERED
34 (
35 [VC_FD_No] ASC
36 )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
37 ) ON [PRIMARY]
38
39 GO
40 SET ANSI_PADDING OFF

CT_InhouseCard表

1 USE [GPOSDB]
2 GO
3 /****** 对象: Table [dbo].[CT_InhouseCard] 脚本日期: 08/24/2013 10:59:58 ******/
4 SET ANSI_NULLS ON
5 GO
6 SET QUOTED_IDENTIFIER ON
7 GO
8 SET ANSI_PADDING ON
9 GO
10 CREATE TABLE [dbo].[CT_InhouseCard](
11 [RecordNO] [int] IDENTITY(1,1) NOT NULL,
12 [VC_IC_CardNO] [varchar](50) NOT NULL,
13 [VC_IC_PhysicalNO] [varchar](50) NULL,
14 [I_IC_CardType] [int] NULL,
15 [VC_IC_UserName] [varchar](50) NULL,
16 [VC_IC_JobNO] [varchar](50) NULL,
17 [VC_IC_UserID] [varchar](50) NULL,
18 [VC_IC_Password] [varchar](50) NULL,
19 [DE_IC_CardAmount] [decimal](18, 2) NULL,
20 [DE_IC_AppendAmount] [decimal](18, 2) NULL,
21 [DE_IC_ConsumerAmount] [decimal](18, 2) NULL,
22 [I_IC_ISLost] [int] NULL,
23 [D_IC_UsedDateTime] [datetime] NULL,
24 [D_IC_UselifeDateTime] [datetime] NULL,
25 [I_IC_IssueStationNO] [int] NULL,
26 [VC_IC_IssuerNO] [varchar](50) NULL,
27 [D_IC_IssueDateTime] [datetime] NULL,
28 [D_IC_LastUpdateDateTime] [datetime] NULL,
29 [I_IC_CardStatus] [int] NULL,
30 [VC_IC_Remark] [varchar](256) NULL,
31 CONSTRAINT [PK_CT_InhouseCard] PRIMARY KEY CLUSTERED
32 (
33 [VC_IC_CardNO] ASC
34 )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
35 ) ON [PRIMARY]
36
37 GO
38 SET ANSI_PADDING OFF

测试脚本
因为这个是客户的数据库,本来里面已经有数据了,所以在测试之前先更新两个表的统计信息,以做到公正

1 USE [GPOSDB]
2 GO
3 UPDATE STATISTICS CT_FuelingData
4 UPDATE STATISTICS CT_InhouseCard
5 GO

IN语句

1 USE [GPOSDB]
2 GO
3 DBCC DROPCLEANBUFFERS
4 GO
5 DBCC FREEPROCCACHE
6 GO
7 SET STATISTICS IO ON
8 GO
9 SET STATISTICS TIME ON
10 GO
11 SET STATISTICS PROFILE ON
12 GO
13 SELECT * FROM [dbo].[CT_FuelingData] WHERE [VC_FD_Cardno] IN (SELECT [VC_IC_CardNO] FROM [dbo].[CT_InhouseCard])

EXISTS语句

1 USE [GPOSDB]
2 GO
3 DBCC DROPCLEANBUFFERS
4 GO
5 DBCC FREEPROCCACHE
6 GO
7 SET STATISTICS IO ON
8 GO
9 SET STATISTICS TIME ON
10 GO
11 SET STATISTICS PROFILE ON
12 GO
13 SELECT *
14 FROM [dbo].[CT_FuelingData]
15 WHERE EXISTS ( SELECT [VC_IC_CardNO]
16 FROM [dbo].[CT_InhouseCard]
17 WHERE [dbo].[CT_FuelingData].[VC_FD_Cardno] = [dbo].[CT_InhouseCard].[VC_IC_CardNO] )

测试结果
IN语句

1 SQL Server 执行时间:
2 CPU 时间 = 0 毫秒,占用时间 = 2 毫秒。
3 SQL Server 分析和编译时间:
4 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
5
6 SQL Server 执行时间:
7 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
8 SQL Server 分析和编译时间:
9 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
10
11 SQL Server 执行时间:
12 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
13 SQL Server 分析和编译时间:
14 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
15
16 SQL Server 执行时间:
17 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
18 SQL Server 分析和编译时间:
19 CPU 时间 = 31 毫秒,占用时间 = 67 毫秒。
20
21 (167 行受影响)
22 表 'Worktable'。扫描计数 0,逻辑读取 0 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
23 表 'CT_FuelingData'。扫描计数 1,逻辑读取 31 次,物理读取 1 次,预读 64 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
24 表 'CT_InhouseCard'。扫描计数 1,逻辑读取 2 次,物理读取 1 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
25
26 (4 行受影响)
27
28 SQL Server 执行时间:
29 CPU 时间 = 16 毫秒,占用时间 = 192 毫秒。

EXISTS语句

1 SQL Server 分析和编译时间:
2 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
3
4 SQL Server 执行时间:
5 CPU 时间 = 0 毫秒,占用时间 = 0 毫秒。
6 SQL Server 分析和编译时间:
7 CPU 时间 = 0 毫秒,占用时间 = 34 毫秒。
8
9 (167 行受影响)
10 表 'Worktable'。扫描计数 0,逻辑读取 0 次,物理读取 0 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
11 表 'CT_FuelingData'。扫描计数 1,逻辑读取 31 次,物理读取 1 次,预读 64 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
12 表 'CT_InhouseCard'。扫描计数 1,逻辑读取 2 次,物理读取 1 次,预读 0 次,lob 逻辑读取 0 次,lob 物理读取 0 次,lob 预读 0 次。
13
14 (4 行受影响)
15
16 SQL Server 执行时间:
17 CPU 时间 = 0 毫秒,占用时间 = 163 毫秒。

大家可以看到除了执行时间有一点差别,IO是一样的
因为数据量比较大,所以两个查询都用到了Worktable(中间表)来存储中间结果
IN语句的执行计划
EXISTS语句的执行计划
从执行计划可以看到两个SQL语句的开销都是一样的,而且大家都使用了右半连接(Right Semi Join)
至于什么是半连接(Semi-join)大家可以看一下这篇文章:SQL Join的一些总结
总结
从上面实际的执行来比较,,IN语句和EXISTS语句基本上都是一样的效率
如有不对的地方,欢迎大家来拍砖o(∩_∩)o
in和exists哪个效率高本人测试证明的更多相关文章
- SQLSERVER语句 in和exists哪个效率高本人测试证明
SQLSERVR语句 in和exists哪个效率高本人测试证明 最近很多人讨论in和exists哪个效率高,今天就自己测试一下 我使用的是客户的数据库GPOSDB(已经有数据) 环境:SQLSERVE ...
- mysql中or和in,in和exists的效率问题
mysql中or和in的效率问题 在网上一直看到的是or和in的效率没啥区别,一直也感觉是这样,前几天刚好在看<mysql数据库开发的36条军规>的文章,里面提到了or和in的 ...
- 关于in与exists的效率讨论
关于in与exists的效率讨论1).select * from A where id in (select id from B)以上查询使用了in语句,in只执行一次,他查出B表的所有id字段并缓存 ...
- C# 多线程 Parallel.For 和 For 谁的效率高?那么 Parallel.ForEach 和 ForEach 呢?
还是那句话:十年河东,十年河西,莫欺少年穷. 今天和大家探讨一个问题:Parallel.For 和 For 谁的效率高呢? 从CPU使用方面而言,Parallel.For 属于多线程范畴,可以开辟多个 ...
- MySQL IN和EXISTS的效率问题,以及执行优化
网上可以查到很多这样的说法: 如果查询的两个表大小相当,那么用in和exists差别不大.如果两个表中一个较小,一个是大表,则子查询表大的用exists,子查询表小的用in: 例如:表A(小表),表B ...
- IN和EXISTS、not in 和not exists的效率详解
从效率来看: 1) select * from T1 where exists(select 1 from T2 where T1.a=T2.a) ; T1数据量小而T2数据量非常大时,T1<& ...
- BZOJ 最大公约数 (通俗易懂&效率高&欧拉函数)
题目 题目描述 给定整数\(N\),求\(1 \le x,y \le N\)且\(gcd(x,y)\)为素数的数对\((x,y)\)有多少对. \(gcd(x,y)\)即求\(x,y\)的最大公约数. ...
- Dubbo入门到精通学习笔记(十五):Redis集群的安装(Redis3+CentOS)、Redis集群的高可用测试(含Jedis客户端的使用)、Redis集群的扩展测试
文章目录 Redis集群的安装(Redis3+CentOS) 参考文档 Redis 集群介绍.特性.规范等(可看提供的参考文档+视频解说) Redis 集群的安装(Redis3.0.3 + CentO ...
- 为什么说在使用多条件判断时switch case语句比if语句效率高?
在学习JavaScript中的if控制语句和switch控制语句的时候,提到了使用多条件判断时switch case语句比if语句效率高,但是身为小白的我并没有在代码中看出有什么不同.去度娘找了半个小 ...
随机推荐
- TRILL浅析
1 TRILL概述 TRILL的全称就是Transparent Interconnection of Lots of Links,顾名思义,其本质就是将非常多条链路透明地组织在一起,以致于上层IP应用 ...
- android 反编译(dex 和 odex),非脑残转帖,绝对可靠
Android 反编译 反编译odex文件(比如framework.odex),若是反编译dex,直接第4步 1.因为反编译odex的工具在D:\Develop tools\android反编译工具\ ...
- Java多线程的~~~Lock接口和ReentrantLock使用
在多线程开发.除了synchronized这个keyword外,我们还通过Lock接口来实现这样的效果.由Lock接口来实现 这样的多线程加锁效果的优点是非常的灵活,我们不在须要对整个函数加锁,并且能 ...
- 如此高效通用的分页存储过程是带有sql注入漏洞的
原文:如此高效通用的分页存储过程是带有sql注入漏洞的 在google中搜索“分页存储过程”会出来好多结果,是大家常用的分页存储过程,今天我却要说它是有漏洞的,而且漏洞无法通过修改存储过程进行补救,如 ...
- UIApplicationMain方法介绍
在IOS程序的main函数中执行了一个UIApplicationMain这个函数,下面介绍以下这个函数的作用. int UIApplicationMain(int argc, char *argv[] ...
- 小结css2与css3的区别
CSS3引进了一些新的元素新的特性,我收集以下,自己做了一个小结: animation(基础动画)eg: div{animation: myfirst 5s linear 2s infinite a ...
- Kaggle入门——使用scikit-learn解决DigitRecognition问题
Kaggle入门--使用scikit-learn解决DigitRecognition问题 @author: wepon @blog: http://blog.csdn.net/u012162613 1 ...
- 快速构建Windows 8风格应用27-漫游应用数据
原文:快速构建Windows 8风格应用27-漫游应用数据 本篇博文主要介绍漫游应用数据概览.如何构建漫游应用数据.构建漫游应用数据最佳实践. 一.漫游应用数据概览 1.若应用当中使用了漫游应用数据, ...
- 防止tab页重复的去请求服务端
直接看图吧. 左边是企业树,右边是依据企业变化的一个tab页 实现功能:1.我们希望假设选中的企业不变,我们在切换旁边五个tab页的时候,仅仅是第一次进去的时候请求server端.以下来回切换tab页 ...
- VS2015集成新潮工具4
VS2015集成新潮工具(四) 本课程来源与微软connect视频教程,Modern Web Tooling in Visual Studio 2015 本课程主要讲下当下流行的前端工具 bowe ...