Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).


The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

题目

给定元素不变的矩阵,求各种子矩阵和。

思路

Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, , 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, , 5]
] sumRegion(2, 1, 4, 3) -> 8
(2,1) 为黄色range左上角的坐标, 所在坐标对应的点为2
(4,3) 为黄色range右下角的坐标, 所在坐标对应的点为0
黄色range中 2 + 0 + 0 + 1 + 0 + 1 + 0 + 3 + 0 = 8 比如, input matrix为
     2    0    -3    4
6 3 2 -1
5 4 7 3
2 -6 8 1

多加一行一列方便写code,变成dp matrix为

 0    0    0     0    0
2 0 -3 4
6 3 2 -1
5 4 7 3
2 -6 8 1

开始fill dp matrix

dp[i][j]表示sum of rectangle from (0,0) to matrix (i-1, j-1)

 0    0    0     0    0
2 2 -1 3 //-> first row: easy to fill(累加)
 0    0    0     0    0
2 -1 3 0 15
// -> first col: easy to fill(累加)
 0    0    0     0    0
0 2 2 -1 3
0 8 X -> dp[i][j] = dp[i-1][j] // 正上方 2
0 13 + dp[i][j-1] // 正左方 8
0 15 + matrix [i-1][j-1] // input matrix 该位置值
- dp[i-1][j-1] // 左上角 2 ,重复加了两次需要减去一次

代码

 class NumMatrix {
private int[][] dp; /* 1.build and fill dp matrix in O(m*n) time */
public NumMatrix(int[][] matrix) {
int row = 0;
int col = 0;
if (matrix.length != 0) {
row = matrix.length;
col = matrix[0].length;
}
dp = new int[row + 1][col + 1];
for (int i = 1; i < dp.length; i++) {
for (int j = 1; j < dp[0].length; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i - 1][j - 1] - dp[i - 1][j - 1];
}
} } /*2. query in O(1) time */
public int sumRegion(int row1, int col1, int row2, int col2) {
/* coz dp matrix has size 1 greater one more than original matrix*/
row1++;
col1++;
row2++;
col2++;
return dp[row2][col2] - dp[row1 - 1][col2] - dp[row2][col1 - 1] + dp[row1 - 1][col1 - 1];
}
}

代码

 class NumMatrix {
private int[][] dp; /* 1.build and fill dp matrix in O(m*n) time */
public NumMatrix(int[][] matrix) {
int row = 0;
int col = 0;
if (matrix.length != 0) {
row = matrix.length;
col = matrix[0].length;
}
dp = new int[row + 1][col + 1];
for (int i = 1; i < dp.length; i++) {
for (int j = 1; j < dp[0].length; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + matrix[i - 1][j - 1] - dp[i - 1][j - 1];
}
} } /*2. query in O(1) time */
public int sumRegion(int row1, int col1, int row2, int col2) {
/* coz dp matrix has size 1 greater one more than original matrix*/
row1++;
col1++;
row2++;
col2++;
return dp[row2][col2] - dp[row1 - 1][col2] - dp[row2][col1 - 1] + dp[row1 - 1][col1 - 1];
}
}

[leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变的更多相关文章

  1. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  2. LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)

    题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...

  3. 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...

  4. [LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  5. leetcode 304. Range Sum Query 2D - Immutable(递推)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  6. LeetCode 304. Range Sum Query 2D – Immutable

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  7. 【刷题-LeetCode】304. Range Sum Query 2D - Immutable

    Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...

  8. [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  9. 【LeetCode】304. Range Sum Query 2D - Immutable 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 预先求和 相似题目 参考资料 日期 题目地址:htt ...

随机推荐

  1. 18_使用react脚手架构建应用

    一.什么是脚手架 1.脚手架:用来帮助程序员快速创建一个基于xxx项目的模板仓库(可以理解为网上的大神写好了基础模板直接下载无需自己配置) 1)包含了所有需要的配置 2)指定好了所有依赖 3)可以直接 ...

  2. Python 百分号字符串拼接

    # %s可以接收一切 %d只能接收数字 msg = 'i am %s my hobby is %s' %('lhf','alex') print msg msg2 = 'i am %s my hobb ...

  3. 2018SDIBT_国庆个人第二场

    A.codeforces1038A You are given a string ss of length nn, which consists only of the first kk letter ...

  4. postman 的基础使用

    https://blog.csdn.net/fxbin123/article/details/80428216

  5. Delphi的程序单元、结构、基础知识(转)

    Object Passal的程序结构很特殊,与其它语言如C++,Object Windows等结构都不同.一个Delphi程序由多个称为单元的源代码模块组成.使用单元可以把一个大型程序分成多个逻辑相关 ...

  6. Java IO流学习总结六:ByteArrayInputStream、ByteArrayOutputStream

    类的继承关系 InputStream |__ ByteArrayInputStream OutputStream |__ ByteArrayOutputStream ByteArrayInputStr ...

  7. linux 3.10 gro的理解和改进

    gro,将同一个flow的一定时间范围之内的skb进行合并,减少协议栈的消耗,用于收包性能提升.gro网上的资料很多,但是都很少谈到gro的改进,刚好身边有个同事也想改这块的内容, 所以将最近看的gr ...

  8. 如何在Windows下安装MYSQL,并截图说明

    说明 : window 下安装 mysql 虽然简单,但是细节不注意就会安装失败,特别是配置服务器时,Current Root Password:为空:如果输入密码了在后面安装会报错.(不知道设置这个 ...

  9. mac使用brew安装sshpass

    brew安装sshpass brew install https://raw.githubusercontent.com/kadwanev/bigboybrew/master/Library/Form ...

  10. Python异常和调试.md

    异常捕获 try 基本概念 我们使用try except来捕获异常,python的try except有几个特点: 不管函数内部嵌套几层,只要在try的范围内就可以被捕获.这句话的意思是一个函数被tr ...