[BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
Input
Line 1: A single integer,N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Solution
1.初始化
f[i][i]代表这个只有这个物品卖出的利润,显然此时f[i][i]=v[i],同时记录v[i]的前缀和,用于转移。
2.DP
方程为f[l][r]=max(f[l+1][r],f[l][r-1])+v[r]-v[l-1],答案由两种小1长度的区间得到,加上区间和代表所有区间内的物品都延迟一天卖出。
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define R register
using namespace std;
int a[2010],v[2010],f[2010][2010];
inline int rd(){
int x=0;
bool f=1;
char c=getchar();
while(!isdigit(c)){
if(c=='-') f=0;
c=getchar();
}
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?x:-x;
}
int main(){
int n=rd();
for(R int i=1;i<=n;++i){
a[i]=f[i][i]=rd();
v[i]=v[i-1]+a[i];
}
for(R int len=2;len<=n;++len)
for(R int l=1;l<=n-len+1;++l){
int r=l+len-1;
f[l][r]=max(f[l+1][r],f[l][r-1])+v[r]-v[l-1];
}
printf("%d",f[1][n]);
return 0;
}
有关区间DP的其他讲解参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/9038198.html
[BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)的更多相关文章
- bzoj 1652: [Usaco2006 Feb]Treats for the Cows【区间dp】
裸的区间dp,设f[i][j]为区间(i,j)的答案,转移是f[i][j]=max(f[i+1][j]+a[i](n-j+i),f[i][j-1]+a[j]*(n-j+i)); #include< ...
- BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )
dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...
- BZOJ 1652: [Usaco2006 Feb]Treats for the Cows
题目 1652: [Usaco2006 Feb]Treats for the Cows Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 234 Solve ...
- 「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp
题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...
- poj 3186 Treats for the Cows(区间dp)
Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...
- kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)
Treats for the Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7949 Accepted: 42 ...
- 【POJ - 3186】Treats for the Cows (区间dp)
Treats for the Cows 先搬中文 Descriptions: 给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次 ...
- Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925
题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...
- Luogu2858[USACO06FEB]奶牛零食Treats for the Cows (区间DP)
我是个傻逼,这么水的题都会T #include <iostream> #include <cstdio> #include <cstring> #include & ...
随机推荐
- Harbor 学习分享系列1 - centos7.4安装harbor1.5.2
centos7.4安装harbor1.5.2 前言 本系列分享将Harbor有关教程:分享形式会以百度云盘的形式进行分享,主要教程将以markdown格式进行分享:建议使用markdownpad2这款 ...
- 在windows10上搭建caffe
caffe环境的搭建一直是让我最头疼的,最近在Windows10上成功搭建了caffe,在此对搭建过程进行记录. 安装主要是按照caffe github上的安装说明进行的,caffe的github主页 ...
- 【机器学习】Apriori算法——原理及代码实现(Python版)
Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是 ...
- 【SE】Week7 : Silver Bullet & Cathedral and Bazaar & Big Ball of Mud & Waterfall ...
1. Silver Bullet No Silver Bullet: Essence and Accidents of Software Engineering —— 无银弹理论,出自于美国1999年 ...
- “北航Clubs” Beta版本开发目标
Beta版本开发目标 总体设想:修复Alpha版本中的若干bug,并在Alpha版本成果之上进行进一步开发,实现社员管理.评论.站内信等功能. 1.对Alpha版本功能的更新与加强 后端实现从SQLi ...
- RAC系统化学习
1.RACSignal: // 只要订阅者调用sendNext,就会执行nextBlock // 只要订阅RACDynamicSignal,就会执行didSubscribe // 前提条件是RAC ...
- 团队项目:安卓端用百度地图api定位显示跑道
因为安卓调用api对我来说是一个完全陌生的领域,我在经过很长时间终于弄出来了,这段时间还是很有成效的,我得到了历练. 第一步:注册成为百度开发者 在百度地图开放平台创建应用.地址http://lbsy ...
- Cloudstack 的搭建
Note: 关闭了NFS Storage 的防火墙 service iptables stop 1. 新创建的Linux没有获取IP; vi /etc/sysconfig/network-script ...
- 深入理解Java反射+动态代理
答: 反射机制的定义: 是在运行状态中,对于任意的一个类,都能够知道这个类的所有属性和方法,对任意一个对象都能够通过反射机制调用一个类的任意方法,这种动态获取类信息及动态调用类对象方法的功能称为j ...
- Delphi cxGrid加行号
procedure SetRowNumber(var ASender: TcxGridTableView; AViewInfo: TcxCustomGridIndicatorItemViewInfo; ...