CodeAction_beta02 斐波那契 (多维DP)
题面:
solution:
这题和斐波那契数列没有任何关系!!!!!
这题就是一个无脑DP!!!!!!!!!!
因为所有数都要出现至少一次,所以只需考虑其组合而不用考虑其排列,最后乘个 n!就是了(意思就是可以当做这 N 个数是无序的)
dp[i][j]表示前 i 个序列放了 j 种数的方案数,所以在放第 i+1 个数的时候有两种选择
- 放一个新的数 则状态变到 dp[i+1][j+1]
- 放一个前面有的数 则状态变到 dp[i+1][j]
对于第一种转移情况有 dp[i+1][j+1]+=dp[i][j]
而对于第二种转移情况 为了满足最小间隔的要求 所以序列末尾的 M 种数是不可以放
的 因此可供选择的数有(j-M)种 即 dp[i+1][j] += dp[i][j](j-M)
算完之后 dp[P][N]N!就是结果
code:
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
#define mod 1000000007
using namespace std;
int n,m,l;
ll ans=1;
ll f[1005][1005];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
int main(){
//freopen("pf.in","r",stdin);
//freopen("pf.out","w",stdout);
n=qr(),m=qr(),l=qr();
f[1][1]=1;
for(rg i=1;i<l;++i){
for(rg j=1;j<=n;++j){
if(!f[i][j])continue;
if(j<n)f[i+1][j+1]+=f[i][j];
if(j>m)f[i+1][j]+=f[i][j]*(j-m)%mod;
}
}ans=f[l][n];
for(rg i=1;i<=n;++i)
ans=ans*i%mod;
printf("%lld",ans);
return 0;
}
CodeAction_beta02 斐波那契 (多维DP)的更多相关文章
- HDU 2041 超级楼梯 (斐波那契数列 & 简单DP)
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2041 题目分析:题目是真的水,不难发现规律涉及斐波那契数列,就直接上代码吧. 代码如下: #inclu ...
- HihoCoder1164 随机斐波那契(概率DP)
描述 大家对斐波那契数列想必都很熟悉: a0 = 1, a1 = 1, ai = ai-1 + ai-2,(i > 1). 现在考虑如下生成的斐波那契数列: a0 = 1, ai = aj + ...
- Ural 1225. Flags 斐波那契DP
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...
- 【斐波那契DP】HDU 4639——HeHe
题目:点击打开链接 多校练习赛4的简单题,但是比赛的时候想到了推导公式f(n)=f(n-1)+f(n-2)(就是斐波那契数列),最后却没做出来. 首先手写一下he(不是hehe)连续时的规律.0-1 ...
- python-Day4-迭代器-yield异步处理--装饰器--斐波那契--递归--二分算法--二维数组旋转90度--正则表达式
本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - ...
- [ZJOI2011]细胞——斐波那契数列+矩阵加速+dp
Description bzoj2323 Solution 题目看起来非常复杂. 本质不同的细胞这个条件显然太啰嗦, 是否有些可以挖掘的性质? 1.发现,只要第一次分裂不同,那么互相之间一定是不同的( ...
- DP思想在斐波那契数列递归求解中的应用
斐波那契数列:1, 1, 2, 3, 5, 8, 13,...,即 f(n) = f(n-1) + f(n-2). 求第n个数的值. 方法一:迭代 public static int iterativ ...
- Xorequ(BZOJ3329+数位DP+斐波那契数列)
题目链接 传送门 思路 由\(a\bigoplus b=c\rightarrow a=c\bigoplus b\)得原式可化为\(x\bigoplus 2x=3x\). 又异或是不进位加法,且\(2x ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
随机推荐
- JS高级程序设计学习笔记1
javascript产生的原因: 在拨号上网时代,表单数据必须发送到服务器端才能验证输入值得有效性,JavaScript的研发就是为了解决这个问题,以便在客户端就验证输入值的有效性. ECMAScri ...
- 20135337朱荟潼 Linux第一周学习总结——计算机是如何工作的
朱荟潼 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课http://mooc.study.163.com/course/USTC-1000029000 1.冯诺依曼体系结 ...
- C++:派生类的构造函数和析构函数的调用顺序
一.派生类 在C++编程中,我们在编写一个基类的派生类时,大致可以分为四步: • 吸收基类的成员:不论是数据成员还是函数成员,派生类吸收除基类的构造函数和析构函数之外的全部成员. • 改造基类函数:在 ...
- Hugepage介绍以及实践
在Linux 64位系统里面,默认内存是以4K的页面(Page)来管理的,当系统有非常多的内存的时候,管理这些内存的消耗就比较大;而HugePage使用2M大小的页面来减小管理开销. Hugepage ...
- Android实现Service永久驻留
说实话,这是一种流氓行为.但有些时候又是不得不需要的.比如微信的NotifyReceiver.现在抛开这些伦理的东西不讲,我们只是来看看技术上怎么实现.在后台运行的service有几个途径可以将其停止 ...
- C#简述(三)
详细请参考:http://www.runoob.com/csharp/csharp-string.html 1.C# 字符串(String) 在 C# 中,可以使用字符数组来表示字符串,但是,更常见的 ...
- PHP仿LED点阵,读取字库文字,并转化为二进制输出
<?php $xml=simplexml_load_file("zimu.xml");//导入XML文件,从XML文件里知道需要提取的字体的信息 $font_height=$ ...
- c# 行转列
将下面表(1)格式的数据转换为表(2)格式的数据.很明显,这是一个行转列的要求,本想在数据库中行转列,因为在数据库中行转列是比较简单的,方法可以参考本站SQLServer中(行列转换)行转列及列转行且 ...
- Cyclic Components CodeForces - 977E(找简单环)
题意: 就是找出所有环的个数, 但这个环中的每个点都必须只在一个环中 解析: 在找环的过程中 判断度数是否为2就行...emm... #include <bits/stdc++.h> us ...
- Single VIP LLB and SLB config
Single VIP LLB and SLB config >>>>>>>>>>>>>>>>>&g ...