WHAT I READ FOR DEEP-LEARNING

Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF
CO-ADAPTING FEATURES) which evades the use of any regularization methods such as Contraction or Denoising.

Lets start with the first one. Highway-Networks proposes a new activation type similar to LTSM networks and they claim that this peculiar activation is robust to any choice of initialization scheme and learning problems occurred at very deep NNs. It is also incentive to see that they trained models with >100 number of layers. The basic intuition here is to learn a gating function attached to a real activation function that decides to pass the activation or the input itself. Here is the formulation

T(x,Wt) is the gating function and H(x,WH) is the real activation. They use Sigmoid activation for gating and Rectifier for the normal activation in the paper. I also implemented it with Lasagne and tried to replicate the results (I aim to release the code later). It is really impressive to see its ability to learn for 50 layers (this is the most I can for my PC).

The other paper ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF CO-ADAPTING FEATURES suggests the use of non-biased rectifier units for the inference of AEs. You can train your model with a biased Rectifier Unit but at the inference time (test time), you should extract features by ignoring bias term. They show that doing so gives better recognition at CIFAR dataset. They also device a new activation function which has the similar intuition to Highway Networks.  Again, there is a gating unit which thresholds the normal activation function.

The first equation is the threshold function with a predefined threshold (they use 1 for their experiments).  The second equation shows the reconstruction of the proposed model. Pay attention that, in this equation they use square of a linear activation for thresholding and they call this model TLin  but they also use normal linear function which is called TRec. What this activation does here is to diminish the small activations so that the model is implicitly regularized without any additional regularizer. This is actually good for learning over-complete representation for the given data.

For more than this silly into, please refer to papers  and warn me for any mistake.

These two papers shows a new coming trend to Deep Learning community which is using complex activation functions . We can call it controlling each unit behavior in a smart way instead of letting them fire naively. My notion also agrees with this idea. I believe even more complication we need for smart units in our deep models like Spike and Slap networks.

 

WHAT I READ FOR DEEP-LEARNING的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. Spring学习(十九)----- Spring与WEB容器整合

    首先可以肯定的是,加载顺序与它们在 web.xml 文件中的先后顺序无关.即不会因为 filter 写在 listener 的前面而会先加载 filter.最终得出的结论是:listener -> ...

  2. Accer 4752G添加固态硬盘 双系统

    (此文一直在草稿箱里躺了一年,略作修改后发布~) 背景:电脑是2011年年末买的,用到现在也已经5年多了,好在没坏过什么硬件,有过2年疯狂打LOL的经历,之后电脑就打不动了,FPS始终上不去,启动游戏 ...

  3. GTK学习笔记————创建窗口

    创建gtk1.c文件 代码 #include <gtk/gtk.h> int main (int argc, char *argv[]) { GtkWidget *window; gtk_ ...

  4. Java 面向对象之构造方法

    01构造方法引入 A:构造方法的引入 在开发中经常需要在创建对象的同时明确对象的属性值,比如员工入职公司就要明确他的姓名.年龄等属性信息. 那么,创建对象就要明确属性值,那怎么解决呢?也就是在创建对象 ...

  5. What is the difference between WinRT, UWP and WPF?

    在学习UWP的过程中确实有这个迷惑,在此分享一下. UWP (Universal Windows platform), Metro and WinRT are all result of Micros ...

  6. RabbitMQ None of the specified endpoints were reachable

    消息队列部署到服务器的时候,需要新增一个用户,然后一定要设置权限.参考一下 https://www.cnblogs.com/gossip/p/4573056.html

  7. 【转帖】Git学习笔记 记录一下

    本文内容参考了廖雪峰老师的博文,并做了适当整理,方便大家查阅. 原帖地址 https://wangfanggang.com/Git/git/ 常用命令 仓库初始化 - git init 1 git i ...

  8. Linux 使用NC命令永久监听本地端口

    感谢: 冰点阳光 Linux可以使用nc命令来测试网络端口是否正常,类似于telnet命令,但也可以用nc命令来监听本地端口,支持TCP.UDP协议,当我们测试NTP服务网络策略是否正常时,可以使用到 ...

  9. c语言和c++有什么区别

    差不多是win98跟winXP的关系.C++是在C的基础上增加了新的理论,玩出了新的花样.所以叫C加加. C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输 ...

  10. Mysql 间隙锁原理,以及Repeatable Read隔离级别下可以防止幻读原理(百度)

    Mysql知识实在太丰富了,前几天百度的面试官问我MySql在Repeatable Read下面是否会有幻读出现,我说按照事务的特性当然会有, 但是面试官却说 Mysql 在Repeatable Re ...