WHAT I READ FOR DEEP-LEARNING

Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF
CO-ADAPTING FEATURES) which evades the use of any regularization methods such as Contraction or Denoising.

Lets start with the first one. Highway-Networks proposes a new activation type similar to LTSM networks and they claim that this peculiar activation is robust to any choice of initialization scheme and learning problems occurred at very deep NNs. It is also incentive to see that they trained models with >100 number of layers. The basic intuition here is to learn a gating function attached to a real activation function that decides to pass the activation or the input itself. Here is the formulation

T(x,Wt) is the gating function and H(x,WH) is the real activation. They use Sigmoid activation for gating and Rectifier for the normal activation in the paper. I also implemented it with Lasagne and tried to replicate the results (I aim to release the code later). It is really impressive to see its ability to learn for 50 layers (this is the most I can for my PC).

The other paper ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF CO-ADAPTING FEATURES suggests the use of non-biased rectifier units for the inference of AEs. You can train your model with a biased Rectifier Unit but at the inference time (test time), you should extract features by ignoring bias term. They show that doing so gives better recognition at CIFAR dataset. They also device a new activation function which has the similar intuition to Highway Networks.  Again, there is a gating unit which thresholds the normal activation function.

The first equation is the threshold function with a predefined threshold (they use 1 for their experiments).  The second equation shows the reconstruction of the proposed model. Pay attention that, in this equation they use square of a linear activation for thresholding and they call this model TLin  but they also use normal linear function which is called TRec. What this activation does here is to diminish the small activations so that the model is implicitly regularized without any additional regularizer. This is actually good for learning over-complete representation for the given data.

For more than this silly into, please refer to papers  and warn me for any mistake.

These two papers shows a new coming trend to Deep Learning community which is using complex activation functions . We can call it controlling each unit behavior in a smart way instead of letting them fire naively. My notion also agrees with this idea. I believe even more complication we need for smart units in our deep models like Spike and Slap networks.

 

WHAT I READ FOR DEEP-LEARNING的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. Asp.Net_from标签中的Enctype=multipart/form-data作用

    ENCTYPE="multipart/form-data"用于表单里有图片上传. <form name="userInfo" method="p ...

  2. 计算机基础知识 一 Basic knowledge of computers One

    计算机硬件由CPU(Central Processing Unit).存储器.输入设备.输出设备组成. CPU通常由控制单元(控制器)和算数逻辑单元(运算器)组成. 运算器:负责进行算数运算和逻辑运算 ...

  3. Deferred Shading 延迟着色(翻译)

    原文地址:https://en.wikipedia.org/wiki/Deferred_shading 在3D计算机图形学领域,deferred shading 是一种屏幕空间着色技术.它被称为Def ...

  4. Mistakes I Made(as a developer)...大龄程序员的忠告...(部分转...)

    在2006年,我开始了编程工作.当意识到来到了十年这个重要的时间关口时,我觉得有必要回顾一下这十年间所犯下的错误,做一做经验总结,并且给正在这个职业上奋斗的人们提出我的一些忠告.开发行业变化得很快,我 ...

  5. HyperLedger/Fabric JAVA-SDK with 1.1

    HyperLedger/Fabric JAVA-SDK with 1.1 该项目可直接在github上访问. 该项目介绍如何使用fabric-sdk-java框架,基于fabric-sdk-java ...

  6. Hyperledger Fabric v1.1.0安装记录(国内源版)

    1. 安装虚拟机     虚拟机软件采用:VirtualBox     操作系统选择:Ubuntu 14.04     内存:4G     CPU:2核     硬盘:20G     2.(可选)更改 ...

  7. maybe i have no answer

    怎么说呢,我从小学开始到高中,大学.我觉得老师对大家都是一样的,虽然我因为父母的原因可能和老师接触比较多,但是学业上其实没什么帮助的. 我更希望老师能给我人生道路上的指点,虽然自己的道路确实是自己走出 ...

  8. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  9. Alpha 冲刺六

    团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 今天没有进行站立式会议,由于团队内有些细节 ...

  10. [Delphi]实现使用TIdHttp控件向https地址Post请求[转]

    开篇:公司之前一直使用http协议进行交互(比如登录等功能),但是经常被爆安全性不高,所以准备改用https协议.百度了一下资料,其实使用IdHttp控件实现https交互的帖子并不少,鉴于这次成功实 ...