BZOJ 3744 Gty的妹子序列 (分块 + BIT)
3744: Gty的妹子序列
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 1931 Solved: 570
[Submit][Status][Discuss]
Description
Input
Output
对每个询问,单独输出一行,表示al...ar中的逆序对数。
Sample Input
1 4 2 3
1
2 4
Sample Output
HINT
Source
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-4;
const int maxn = 5e4 + 10;
const int maxm = 2e5 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} const int SIZE = 225;
int A[maxn];
int f[maxn/SIZE+10][maxn];
int s[maxn/SIZE+10][maxn];
int sum[maxn];
int val[maxn];
inline int lowbit(int x){ return -x&x; }
inline int add(int x, int c){
while(x < maxn){
sum[x] += c;
x += lowbit(x);
}
} inline int query(int x){
int ans = 0;
while(x){
ans += sum[x];
x -= lowbit(x);
}
return ans;
} int solve(int l, int r){
int lb = l / SIZE, rb = r / SIZE;
if(lb == rb){
int ans = 0;
for(int i = l, k = 0; i <= r; ++i, ++k)
ans += k - query(A[i]), add(A[i], 1);
for(int i = l; i <= r; ++i) add(A[i], -1);
return ans;
}
int ans = f[lb+1][r];
for(int i = rb*SIZE; i <= r; ++i) add(A[i], 1);
for(int i = (lb+1)*SIZE-1; i >= l; --i)
ans += query(A[i]-1) + (s[rb-1][A[i]-1] - s[lb][A[i]-1]), add(A[i], 1);
for(int i = l; i < (lb+1)*SIZE; ++i) add(A[i], -1);
for(int i = rb*SIZE; i <= r; ++i) add(A[i], -1);
return ans;
} int main(){
scanf("%d", &n);
int b = 0, cnt = 0;
for(int i = 0; i < n; ++i){
scanf("%d", A+i);
val[i] = A[i];
if(++cnt == SIZE) b++, cnt = 0;
}
sort(val, val + n);
int length = unique(val, val + n) - val;
for(int i = 0; i < n; ++i) A[i] = lower_bound(val, val + length, A[i]) - val + 1;
for(int i = 0; i <= b; ++i){
for(int j = i * SIZE, k = 0; j < n; ++j, ++k){
f[i][j] = k - query(A[j]) + f[i][j-1];
add(A[j], 1);
}
ms(sum, 0);
for(int j = i * SIZE; j < (i+1)*SIZE; ++j) ++s[i][A[j]];
for(int j = 1; j <= length; ++j) s[i][j] += s[i][j-1];
for(int j = 1; j <= length; ++j) s[i][j] += s[i-1][j];
}
scanf("%d", &m);
int last = 0;
while(m--){
int l, r;
scanf("%d %d", &l, &r);
l ^= last, r ^= last;
l = max(l, 1); r = max(r, 1);
r = min(n, r); l = min(l, n);
if(l > r) swap(l, r);
last = solve(l - 1, r - 1);
printf("%d\n", last);
}
return 0;
}
BZOJ 3744 Gty的妹子序列 (分块 + BIT)的更多相关文章
- BZOJ 3744 Gty的妹子序列 (分块+树状数组+主席树)
题面传送门 题目大意:给你一个序列,多次询问,每次取出一段连续的子序列$[l,r]$,询问这段子序列的逆序对个数,强制在线 很熟悉的分块套路啊,和很多可持久化01Trie的题目类似,用分块预处理出贡献 ...
- BZOJ 3744: Gty的妹子序列 [分块]
传送门 题意:询问区间内逆序对数 感觉这种题都成套路题了 两个预处理$f[i][j]$块i到j的逆序对数,$s[i][j]$前i块$\le j$的有多少个 f我直接处理成到元素j,方便一点 用个树状数 ...
- BZOJ 3744 Gty的妹子序列 分块+树状数组
具体分析见 搬来大佬博客 时间复杂度 O(nnlogn)O(n\sqrt nlogn)O(nnlogn) CODE #include <cmath> #include <cctyp ...
- BZOJ 3744: Gty的妹子序列 【分块 + 树状数组 + 主席树】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3744 3744: Gty的妹子序列 Time Limit: 20 Sec Memory ...
- bzoj 3744: Gty的妹子序列 主席树+分块
3744: Gty的妹子序列 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 101 Solved: 34[Submit][Status] Descr ...
- BZOJ 3744 Gty的妹子序列
Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见-- 某天,蒟蒻Autumn发现了从 Gty的妹子树上掉落下来了许多妹子,他发现 她们排成了一个序 ...
- bzoj 3744 Gty的妹子序列 区间逆序对数(在线) 分块
题目链接 题意 给定\(n\)个数,\(q\)个询问,每次询问\([l,r]\)区间内的逆序对数. 强制在线. 思路 参考:http://www.cnblogs.com/candy99/p/65795 ...
- BZOJ - 3744 Gty的妹子序列 (区间逆序对数,分块)
题目链接 静态区间逆序对数查询,这道题用线段树貌似不好做,可以把区间分成$\sqrt n$块,预处理出两个数组:$sum[i][j]$和$inv[i][j]$,$sum[i][j]$表示前i个块中小于 ...
- BZOJ 3744 Gty的妹子序列 做法集结
我只会O(nnlogn)O(n\sqrt nlogn)O(nnlogn)的 . . . . 这是分块+树状数组+主席树的做法O(nnlogn)O(n\sqrt nlogn)O(nnlogn) 搬来 ...
随机推荐
- Repeater绑定数据 后台自定义的DataTable
前台:<asp:Repeater ID="Repeater1" runat="server"> <ItemTemplat ...
- day 05 字典,字典嵌套
字典: 1.列表如果存储大量数据,查询速度相对慢一些 2.列表存储的数据,一般没有什么关联性 针对以上原因,python提供了一个基础数据类型,dict 字典 数据类型的分类 : 容器型数据类型:li ...
- listView 滑动时 滑到一半自动滑动到对应的位置
package com.bi.demo; import android.support.v7.app.AppCompatActivity; import android.os.Bundle; impo ...
- php中时间转换函数
date("Y-m-d H:i",$unixtime) 1.php中获得今天零点的时间戳 要获得零点的unix时间戳,可以使用 $todaytime=strtotime(“tod ...
- linux操作系统-两台linux服务器SSH免密码登录
A为本地主机(即用于控制其他主机的机器) ; B为远程主机(即被控制的机器Server), ip为192.168.100.247 ; A和B的系统都是Linux 在A上的命令 # ssh-keyg ...
- 在浏览器中运行java applet
最近在看java applet,在eclipse中可以正常运行,于是想试试在浏览器中运行.但途中遇到很多问题,网上很多解答也不全面,于是想把自己的解决过程记录下来. [1]首先,编写的applet程序 ...
- 动态加载JS脚本到HTML
如果用原生态的js 有2中方法 1.直接document.write <script language="javascript"> document.wr ...
- SQL Server 2008设置sa用户并开启远程连接
1.打开SQL Server Management Studio,以windows身份登录数据库
- 杭电1133 排队买票 catalan
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- C++ 的虚析构函数
当一个基类的指针指向一个派生类的对象,并用该基类的指针去删除或者析构派生类对象时,如果基类的析构函数不是声明为虚函数,那么在析构时基类的析构函数将会被直接调用,派生类的析构函数应为没被调用而导致内存泄 ...