Description

去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了。

在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数。他现在长大了,题目也变难了。

求如下表达式的值:

其中 表示ij的约数个数。

他发现答案有点大,只需要输出模1000000007的值。

Input

第一行一个整数n。

Output

一行一个整数ans,表示答案模1000000007的值。

Sample Input

2

Sample Output

8

HINT

对于100%的数据n <= 10^9。

Solution

弱化版在【刷题】BZOJ 3994 [SDOI2015]约数个数和

式子一模一样

把最后的式子用杜教筛求就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000000+10,Mod=1e9+7;
int n,cnt,vis[MAXN],prime[MAXN],mu[MAXN],s[MAXN];
std::map<int,ll> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
mu[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
}
for(register int i=1;i<MAXN;++i)s[i]=(s[i-1]+mu[i])%Mod;
}
inline ll S(int x)
{
if(x<MAXN)return s[x];
if(M.find(x)!=M.end())return M[x];
ll res=0;
for(register int i=2;;)
{
if(i>x)break;
int j=x/(x/i);
(res+=1ll*(j-i+1)*S(x/i)%Mod)%=Mod;
i=j+1;
}
return M[x]=(1-res+Mod)%Mod;
}
inline ll f(int x)
{
ll res=0;
for(register int i=1;;)
{
if(i>x)break;
int j=x/(x/i);
(res+=1ll*(j-i+1)*(x/i)%Mod)%=Mod;
i=j+1;
}
return res;
}
int main()
{
read(n);init();
ll res=0;
for(register int i=1;;)
{
if(i>n)break;
int j=n/(n/i);
ll now=f(n/i);
(res+=1ll*(S(j)-S(i-1)+Mod)%Mod*now%Mod*now%Mod)%=Mod;
i=j+1;
}
write(res,'\n');
return 0;
}

【刷题】BZOJ 4176 Lucas的数论的更多相关文章

  1. bzoj 4176 Lucas的数论

    bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i= ...

  2. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  3. BZOJ 4176: Lucas的数论 [杜教筛]

    4176: Lucas的数论 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_0(ij)\) \(n \le 10^9\) 代入\(\sigma_0(nm)=\sum_{ ...

  4. bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演

    4176: Lucas的数论 Time Limit: 30 Sec  Memory Limit: 256 MB Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么 ...

  5. ●BZOJ 4176 Lucas的数论

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4176 题解: 莫比乌斯反演,杜教筛 首先有这么一个结论: 令d(n)表示n的约数的个数(就是 ...

  6. [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)

    题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) ...

  7. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

  8. bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】

    首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\su ...

  9. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

随机推荐

  1. 在main函数前后执行的函数之 C语言

    在gcc中,可以使用attribute关键字,声明constructor和destructor,来指定了函数在main之前或之后运行,代码如下: #include <stdio.h> __ ...

  2. ASP.NET Response.Redirect 丢失 Session的问题(作废,仅供参考)

    以前在做ASP.NET开发时一直没注意到一个问题,就是广泛使用的Response.Redirect方法并不会将服务器端在Response中新增或修改的Cookie返回给客户端浏览器,而网站的Sessi ...

  3. MariaDB数据库性能优化

    1. 硬件优化 1.1 内存(Memory) 内存是最重要的因素,因为它允许您调整服务器系统变量.更多的内存意味着可以将更大的密钥和表缓存存储在内存中,从而减少磁盘访问速度,降低一个数量级. 如果未将 ...

  4. Cloud Foundry 组件

    原文:https://blog.csdn.net/little_crab_0924/article/details/78022391 Cloud Foundry 组件概述 Cloud Foundry ...

  5. 2017-2018-2 20155310『网络对抗技术』Exp5:MSF基础应用

    2017-2018-2 20155310『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:由攻击者或渗透测试者利 ...

  6. navicat 创建查询失败 can not create file

    数据库连接很正常, 却无法创建查询, 不知道啥毛病 竟然是存储路径问题,点开连接属性,修改高级里面的保存路径,删掉“:3308”, OK了.冒号是个windows保留的盘符,应该就是这个原因

  7. it面试技巧

    一:请你自我介绍一下你自己? 回答提示:一般人回答这个问题过于平常,只说姓名.年龄.爱好.工作经验,这些在简历上都有.其实,企业最希望知道的是求职者能否胜任工作,包括:最强的技能.最深入研究的知识领域 ...

  8. SQL Server 常用内置函数

    本文用于收集在运维中经常使用的系统内置(built-in)函数,持续整理中 一,常用Metadata函数 1,查看数据库的ID和Name db_id(‘DB Name’),db_name('DB ID ...

  9. nova状态同步

    服务初始化阶段 nova-compute服务启动时调用manager中的host初始化函数 self.manager.init_host() 在host初始化函数中完成如下操作: #初始化libvir ...

  10. JDBC详解系列(一)之流程

    ---[来自我的CSDN博客](http://blog.csdn.net/weixin_37139197/article/details/78838091)--- JDBC概述   使用JDBC也挺长 ...