Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算)
Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算)
Description
T 公司发现其研制的一个软件中有 n 个错误,随即为该软件发放了一批共 m 个补丁程序。每一个补丁程序都有其特定的适用环境,某个补丁只有在软件中包含某些错误而同时又不包含另一些错误时才可以使用。一个补丁在排除某些错误的同时,往往会加入另一些错误。换句话说,对于每一个补丁 i,都有 2 个与之相应的错误集合 B1[i]和 B2[i],使得仅当软件包含 B1[i]中的所有错误,而不包含 B2[i]中的任何错误时,才可以使用补丁 i。补丁 i 将修复软件中的某些错误 F1[i],而同时加入另一些错误 F2[i]。另外,每个补丁都耗费一定的时间。试设计一个算法,利用 T 公司提供的 m 个补丁程序将原软件修复成一个没有错误的软件,并使修复后的软件耗时最少。对于给定的 n 个错误和 m 个补丁程序,找到总耗时最少的软件修复方案。
Input
第 1 行有 2 个正整数 n 和 m,n 表示错误总数,m表示补丁总数,1<=n<=20, 1<=m<=100。接下来 m 行给出了 m 个补丁的信息。每行包括一个正整数,表示运行补丁程序 i 所需时间,以及 2 个长度为 n 的字符串,中间用一个空格符隔开。第 1 个字符串中,如果第 k 个字符 bk 为“+”,则表示第 k 个错误属于 B1[i],若为“-”,则表示第 k 个错误属于 B21[i],若为“0”,则第 k 个错误既不属于 B1[i]也不属于 B2[i],即软件中是否包含第 k 个错误并不影响补丁 i 的可用性。第 2 个字符串中,如果第 k 个字符 bk为“-”,则表示第 k 个错误属于 F1[i],若为“+”,则表示第 k 个错误属于 F2[i],若为“0”,则第 k 个错误既不属于 F1[i]也不属于 F2[i],即软件中是否包含第 k 个错误不会因使用补丁i 而改变。
Output
程序运行结束时,将总耗时数输出。如果问题无解,则输出 0。
Sample Input
3 3
1 000 00-
1 00- 0-+
2 0-- -++
Sample Output
8
Http
Libre:https://loj.ac/problem/6009
Luogu:https://www.luogu.org/problem/show?pid=2761
Source
最短路径,位运算
解决思路
话说这不是一道最短路径的题目吗?为什么放在了网络流里面?不懂╮(╯▽╰)╭
我们用位运算的方式表示一个错误有没有修复。对于错误i,若第i-1位是1则表示该错误存在,否则表示不存在。而每一次转移就根据位运算的操作来判断是否满足某些错误存在而另一些错误不存在的情况。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxN=300;
const int maxM=maxN*maxN*2;
const int inf=2147483647;
int n,m;
unsigned int B1[maxN];//B1,B2,F1,F2的意义与题目一样
unsigned int B2[maxN];
unsigned int F1[maxN];
unsigned int F2[maxN];
int Cost[maxN];
int Q[(1<<21)];
int Dist[(1<<21)];
bool inqueue[(1<<21)];
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
{
char str[maxN];
scanf("%d%s",&Cost[i],str);
for (int j=0;j<n;j++)
if (str[j]=='+')
B1[i]=B1[i]|(1<<(j));//这里是标记某个错误是否出现,注意标号从0开始
else
if (str[j]=='-')
B2[i]=B2[i]|(1<<j);
scanf("%s",str);
for (int j=0;j<n;j++)
if (str[j]=='+')
F1[i]=F1[i]|(1<<j);
else
if (str[j]=='-')
F2[i]=F2[i]|(1<<j);
}
for (int i=0;i<=(1<<n)-1;i++)
Dist[i]=inf;
int h=1,t=0;
Q[1]=(1<<n)-1;//开始时所有错误都存在
Dist[(1<<n)-1]=0;
inqueue[(1<<n)-1]=1;
do
{
t++;
int u=Q[t];
inqueue[u]=0;
for (int i=1;i<=m;i++)
{
unsigned int now=u;
if (((now&B1[i])==B1[i]) && (((~now)&B2[i])==B2[i]))//要满足B1[i]中的错误都存在且B2[i]中的错误都不存在才能加入该补丁
{
now=now&(~F2[i]);//先去掉该补丁修复的错误
now=now|F1[i];//再加上该补丁加上的错误
if (Dist[now]>Dist[u]+Cost[i])//更新最优值
{
Dist[now]=Dist[u]+Cost[i];
if (inqueue[now]==0)
{
h++;
Q[h]=now;
inqueue[now]=1;
}
}
}
}
}
while (h!=t);
if (Dist[0]==inf)//注意输出无解
cout<<0<<endl;
else
cout<<Dist[0]<<endl;
return 0;
}
Libre 6009 「网络流 24 题」软件补丁 / Luogu 2761 软件安装问题 (最短路径,位运算)的更多相关文章
- Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流)
Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流) Description 问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同 ...
- Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流)
Libre 6013 「网络流 24 题」负载平衡 (网络流,最小费用最大流) Description G 公司有n 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使n ...
- Libre 6012 「网络流 24 题」分配问题 (网络流,费用流)
Libre 6012 「网络流 24 题」分配问题 (网络流,费用流) Description 有n件工作要分配给n个人做.第i个人做第j件工作产生的效益为\(c_{ij}\).试设计一个将n件工作分 ...
- Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)
Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...
- Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流)
Libre 6010「网络流 24 题」数字梯形 (网络流,最大费用最大流) Description 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开 ...
- Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流)
Libre 6008 「网络流 24 题」餐巾计划 (网络流,最小费用最大流) Description 一个餐厅在相继的N天里,第i天需要Ri块餐巾(i=l,2,-,N).餐厅可以从三种途径获得餐巾. ...
- Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)
Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...
- Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)
Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...
- Libre 6004 「网络流 24 题」圆桌聚餐(网络流,最大流)
Libre 6004 「网络流 24 题」圆桌聚餐(网络流,最大流) Description 假设有来自n个不同单位的代表参加一次国际会议.每个单位的代表数分别为 ri.会议餐厅共有m张餐桌,每张餐桌 ...
随机推荐
- # 2017-2018-2 20155319『网络对抗技术』Exp2:后门原理与实践
2017-2018-2 20155319『网络对抗技术』Exp2:后门原理与实践 1.实验准备 一.实验说明 任务一:使用netcat获取主机操作Shell,cron启动 (0.5分) 任务二:使用s ...
- Exp1 PC平台逆向破解(5)M
Exp1 PC平台逆向破解(5)M [ 直接修改程序机器指令,改变程序执行流程] 用命令cp pwn1 20155320备份pwn1 输入objdump -d 20155320反汇编,找到call指令 ...
- 汇编 LEA 指令
知识点: LEA指令 &与LEA OD里修改汇编代码 一.LEA指令格式 有效地址传送指令 LEA 格式: LEA 操作数A, 操作数B 功能: 将操作数B的有效地址传送到指定的的 ...
- 11.8 开课二个月零四天 (Jquery取属性值,做全选,去空格)
1.jquery取复选框的值 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "htt ...
- 【SP1811】LCS - Longest Common Substring
[SP1811]LCS - Longest Common Substring 题面 洛谷 题解 建好后缀自动机后从初始状态沿着现在的边匹配, 如果失配则跳它的后缀链接,因为你跳后缀链接到达的\(End ...
- libgdx学习记录25——Rectangle与Circle是否重叠
Rect与Circle重叠有三种情况: 1. Rect至少有一个角在Circle里面 2. Circle与Rect的左边或右边相交,或者Circle在Rect内 3. Circle与Rect的顶边或底 ...
- 【2017年9月10日更新】ABP配套代码生成器(ABP Code Generator)帮助文档,实现快速开发
ABP代码生成器介绍 ABP Code Generator 针对abp这个框架做了一个代码生成器,功能强大.分为两大功能点,一个是数据层,一个是视图层. 数据服务层:通过它,可以实现表设计.领域层初始 ...
- Python+Selenium+Unittest+Ddt+HTMLReport分布式数据驱动自动化测试框架结构
1.Business:公共业务模块,如登录模块,可以把登录模块进行封装供调用 ------login_business.py from Page_Object.Common_Page.login_pa ...
- ffmpeg sox 音频转换 MP3 转 wav
转自:https://blog.csdn.net/xiaoshulf/article/details/78657172 1 windows 下 mp3 文件和 wav 文件的 转换 实现代码: 1 f ...
- "Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network" 解读
简介:这是一篇17年的CVPR,作者提出使用现有的人脸识别深度神经网络Resnet101来得到一个具有鲁棒性的人脸模型. 原文链接:https://www.researchgate.net/publi ...