poj 1364 King(线性差分约束+超级源点+spfa判负环)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 14791 | Accepted: 5226 |
Description
Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.
The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.
After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.
Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.
After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.
Input
Output
Sample Input
4 2
1 2 gt 0
2 2 lt 2
1 2
1 0 gt 0
1 0 lt 0
0
Sample Output
lamentable kingdom
successful conspiracy
Source
问你是否存在一个序列S{a1,a2,a3.....an}
可以满足下面两种不同数量的约束
从a1开始累加,再加2个的和大于w
根据题目意思即a1+a2+a3>w
变形一下即s[3]-s[0]>w
移动位置变形一下:s[0]-s[3]<-w
继续变形:s[0]-s[3]<=-w-1
即通式为:s[x-1]-s[x+y]<=-w-1
从a2开始累加,再加两个的和小于w
即a2+a3+a4<w
变形一下:s[4]-s[1]<w
继续变形:s[4]-s[1]<=w-1
通式:s[x+y]-s[x-1]<=w-1
从j指向i 权值为c这样建图
这样是为了保证图的连通性
然后判断一下图中是否存在负环,存在负环则表示某些约束不能满足
则不存在这样的序列
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww) {}
};
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=; i<max_v; i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=; j<G[u].size(); j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=; j<G[u].size(); j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int n,m;
char str[];
int x,y,w;
while(~scanf("%d",&n))
{
if(n==)
break;
scanf("%d",&m);
init();
while(m--)
{
scanf("%d %d %s %d",&x,&y,str,&w);
if(strcmp(str,"gt")==)
{
int u=x+y;
int v=x-;
if(f(u,v))
G[u].push_back(node(v,-w-));
}else if(strcmp(str,"lt")==)
{
int u=x+y;
int v=x-;
if(f(v,u))
G[v].push_back(node(u,w-));
}
}
int s=n+;//超级源点 保证图的连通性
for(int i=;i<=n;i++)//超级源点到每个点的距离为0
{
if(f(s,i))
G[s].push_back(node(i,));
}
int flag=spfa(s,n+);
if(flag==)
printf("lamentable kingdom\n");
else
printf("successful conspiracy\n");
}
return ;
}
/*
题目意思:
问你是否存在一个序列S{a1,a2,a3.....an}
可以满足下面两种不同数量的约束 假设s[x]表示a1+....+ax的和 约束1:x y gt w 比如1 2 gt w
从a1开始累加,再加2个的和大于w
根据题目意思即a1+a2+a3>w
变形一下即s[3]-s[0]>w
移动位置变形一下:s[0]-s[3]<-w
继续变形:s[0]-s[3]<=-w-1
即通式为:s[x-1]-s[x+y]<=-w-1 约束2:x y lt w 比如2 2 lt w
从a2开始累加,再加两个的和小于w
即a2+a3+a4<w
变形一下:s[4]-s[1]<w
继续变形:s[4]-s[1]<=w-1
通式:s[x+y]-s[x-1]<=w-1 都是形如x[i]-x[j]<=c的形式
从j指向i 权值为c这样建图 注意:建图完毕之后存在n+1个点,然后在加一个超级源点s,让s到这n+1个点的距离都为0
这样是为了保证图的连通性
然后判断一下图中是否存在负环,存在负环则表示某些约束不能满足
则不存在这样的序列 加了超级源点之后图中一共有n+2个点!!! 建议spfa判负环
*/
poj 1364 King(线性差分约束+超级源点+spfa判负环)的更多相关文章
- POJ 1364 King (差分约束)
King Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8660 Accepted: 3263 Description ...
- poj 1364 King(差分约束)
题意(真坑):傻国王只会求和,以及比较大小.阴谋家们想推翻他,于是想坑他,上交了一串长度为n的序列a[1],a[2]...a[n],国王作出m条形如(a[si]+a[si+1]+...+a[si+ni ...
- POJ 3259 Wormholes(SPFA判负环)
题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...
- POJ 1860——Currency Exchange——————【最短路、SPFA判正环】
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- poj 2049(二分+spfa判负环)
poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...
- POJ——1364King(差分约束SPFA判负环+前向星)
King Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11946 Accepted: 4365 Description ...
- BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)
BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...
- poj 3621 二分+spfa判负环
http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
随机推荐
- FZU1759(SummerTrainingDay04-B 欧拉降幂公式)
Problem 1759 Super A^B mod C Accept: 1056 Submit: 3444Time Limit: 1000 mSec Memory Limit : 327 ...
- TCP 回顾
报文 状态 从wiki上搬运过来 重要参数 RTT(Round Trip Time) 即链路传输延时,从数据发送到达对端并受到对端ack的一次来回时间.由于TCP是依赖报文确认机制来实现传输的可靠性的 ...
- Struts 2(二)
一,框架的扩展名问题: ,struts2框架的默认扩展名:.action和空字符串.在框架的属性文件default.properties中进行默认配置:struts.action.extension= ...
- css3 之 display 属性
1.定义 语法:display:none | inline | block | list-item | inline-block | table | inline-table | table-capt ...
- Clumsy 弱网络环境模拟工具使用介绍
Clumsy 弱网络环境模拟工具使用介绍 by:授客 QQ:1033553122 简介 利用封装 Winodws Filtering Platform 的WinDivert 库, clumsy 能实时 ...
- Hive Serde - CSV、TSV
CSV hive-0.14.0内置支持CSV Serde,以前的版本需要引入第三方库的jar包(http://https://github.com/ogrodnek/csv-serde) 现在有个文本 ...
- 类与接口(二)java的四种内部类详解
引言 内部类,嵌套在另一个类的里面,所以也称为 嵌套类; 内部类分为以下四种: 静态内部类 成员内部类 局部内部类 匿名内部类 一.静态内部类 静态内部类: 一般也称"静态嵌套类" ...
- [WPF 容易忽视的细节] —— Exception in WPF's Converter
前言: 在WPF中,Converter是我们经常要用到的一个工具,因为XAML上绑定的数据不一定是我们需要的数据. 问题: 在Converter中抛出一个异常导致程序崩溃,而且是在对未捕获异常进行集中 ...
- aop 拦截含有特定注解的类
1.功能点:使用aop拦截含有自定义注解的类 1.自定义注解 package com.zhuanche.common.dingdingsync; import java.lang.annotation ...
- ChatOps如何变革企业业务
[编者按]本文作者为日志分析软件公司 Logz.io 的联合创始人 Tomer Levy,主要介绍 ChatOps 的特点与发展历程,以及将来可能带来的业务变革.文章系国内 ITOM 管理平台 One ...