洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的。
题目传送门:洛谷P4609。
题意简述:
求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B\) 个。
答案对 \(mod=10^9+7\) 取模。
有 \(T\) 组数据。
题解:
考虑最大的元素 \(N\) ,它把序列分成两部分。
考虑左边的一部分,它满足比之前所有数都大的数正好有 \(A-1\) 个,右边同理。
把每个比之前所有数都大的数和其右边比它小的连续一段的数分为一组,则左边有 \(A-1\) 组。
每一组中,最大的元素要放在最左边,其余的排列方式随意,所以是一个圆排列,即有代表元素的排列。
这提示我们考虑第一类斯特林数。
把左边和右边合起来考虑,总共 \(N-1\) 个元素,分成 \(A+B-2\) 个圆排列,也就是 \(\mathbf{S}_{N-1}^{A+B-2}\) 。
但是这些圆排列中,需要选取 \(A-1\) 个放在左边一部分,右边的放剩下的,也就是 \(\mathbf{C}_{A+B-2}^{A-1}\) 。
注意到确定了一部分放置哪些圆排列后,这一部分的圆排列顺序就确定了。
所以答案就是 \(\mathbf{S}_{N-1}^{A+B-2}\mathbf{C}_{A+B-2}^{A-1}\) 。
因为数据范围不大,暴力预处理第一类斯特林数和组合数即可。
// 第一类斯特林数 (Stirling Number of the First Type)
// 将 n 个有标号元素 分为 m 个 圆排列 (无序) 的方案数 记作 S(n,m)
// 圆排列 : 轮换相同的视作相同的排列。
// 圆排列的实际意义 : 有代表元素的排列 , 例如代表元素为最大元素
// S(n,m) = S(n-1,m-1) + (n-1)*S(n-1,m)
// 考虑第 n 个元素 , 单独成一个排列 , 或者在前 n-1 个元素中的任意一个的左侧插入
// 边界 : S(0,0)=1 , S(n,0)=0 #include <cstdio> typedef long long LL;
const int mod = ; int S[][], C[][]; void Init() {
S[][] = ;
for (int i = ; i <= ; ++i) {
for (int j = ; j <= i && j <= ; ++j) {
S[i][j] = (S[i - ][j - ] + (LL)(i - ) * S[i - ][j]) % mod;
}
} C[][] = ;
for (int i = ; i <= ; ++i) {
C[i][] = ;
for (int j = ; j <= i && j <= ; ++j)
C[i][j] = (C[i - ][j - ] + C[i - ][j]) % mod;
}
} int main() {
Init();
int T;
scanf("%d", &T);
while (T--) {
int n, A, B;
scanf("%d%d%d", &n, &A, &B);
printf("%lld\n", (LL)S[n - ][A + B - ] * C[A + B - ][A - ] % mod);
}
return ;
}
洛谷 P4609: [FJOI2016] 建筑师的更多相关文章
- 洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接 洛谷P4609 题解 感性理解一下: 一神带\(n\)坑 所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列 ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- [洛谷4609] [FJOI2016]建筑师
题目描述 LOJ题面:https://loj.ac/problem/2173. 洛谷题面:https://www.luogu.org/problemnew/show/P4609. Solution [ ...
- Luogu P4609 [FJOI2016]建筑师&&CF 960G Bandit Blues
考虑转化题意,我们发现其实就是找一个长度为\(n\)的全排列,使得这个排列有\(A\)个前缀最大值,\(B\)个后缀最大值,求方案数 我们考虑把最大值拎出来单独考虑,同时定义一些数的顺序排列为单调块( ...
- 洛谷P4608 [FJOI2016]所有公共子序列问题 【序列自动机 + dp + 高精】
题目链接 洛谷P4608 题解 建个序列自动机后 第一问暴搜 第二问dp + 高精 设\(f[i][j]\)为两个序列自动机分别走到\(i\)和\(j\)节点的方案数,答案就是\(f[0][0]\) ...
- 洛谷P4587 [FJOI2016]神秘数(主席树)
题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...
- P4609 [FJOI2016]建筑师
思路 裸的第一类斯特林数,思路和CF960G相同 预处理组合数和第一类斯特林数回答即可 代码 #include <cstdio> #include <cstring> #inc ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
随机推荐
- 【SE】Week1 : 四则运算题目生成器批改器程序总结
用户需求详见:http://www.cnblogs.com/jiel/p/4810756.html 1)PSP表格分析(预计耗时): PSP2.1 Personal Software Process ...
- [转载]ValidationExpression验证规则
ValidationExpression验证规则 在ASP.NET中,ValidationExpression 验证规则属性可以根据自已的需要,对输入的数据进行限制,其常用符号如下表所示: 符号 ...
- Day Ten
站立式会议 站立式会议内容总结 331 今天:话题单选对话框 遇到问题:无 442 今天:数据库交互,解决timepicker问题 遇到的问题:无 439 今天:测试模块功能 遇到问题:无 会议照片 ...
- 2013 C#单元测试
首先安装Unit Test Generator. 点击拓展和更新——>联机搜索Unit Test Generator 新建项目 新建一个测试类 add函数 选定test 类名 ——>右键 ...
- 80C51存储器与C51内存优化
80C51在物理结构上有四个存储空间:片内程序存储器.片外程序存储器.片内数据存储器和片外数据存储器.但在逻辑上,即从用户使用的角度上,80C51有三个存储空间:片内外统一编址的64KB的程序存储器地 ...
- QEMU简单知识 以及磁盘格式转换的简单命令
From 百度百科 QEMU,是由 Fabrice Bellard开发的通用.开源机器模拟与虚拟化软件,Fabrice Bellard是另一个著名的C编译器的作者.QEMU可以在不同的机器上运行独自开 ...
- OI回忆录第一章 逐梦之始
2013年春,初中零年级.GXZ来到吉大高中机房,参加一位老师曾在班级宣传的"计算机培训".同行的有这位老师,以及近80名同学.和同学们一样,GXZ也是为了在机房玩游戏而参加所谓的 ...
- 【刷题】BZOJ 3653 谈笑风生
Description 设T 为一棵有根树,我们做如下的定义: ? 设a和b为T 中的两个不同节点.如果a是b的祖先,那么称"a比b不知道 高明到哪里去了". ? 设a 和 b 为 ...
- 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)
bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...
- MySQL -- 主从复制的可靠性与可用性
主库A执行完成一个事务, 写入binlog ,记为 T1 然后传给从库B,从库B 接收该binlog ,记为 T2 从库B执行完成这个事务,记为 T3 同步延时: T3-T1 同一个事务,在 从库执行 ...