Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化
版权声明:本文为博主原创文章,转载请指明转载地址
http://www.cnblogs.com/fydeblog/p/7365475.html
前言
学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新!
这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题
简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况
回归问题:
第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练中;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出, 若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
分类问题也一样:
问题来了,那么解决方案也出现了,那就是正则化。
1. 改造代价函数
上面出现的过拟合是因为那些高次项导致了它们的产生,所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了。
试想一下,将上面的代价函数改动如下,增加了关于和两项
这样做的话,我们在尝试最小化代价时也需要将这个表达式纳入考虑中,并最终导致选择较小一些的θ3和θ4,那样就从过拟合过渡到拟合状态。
经过正则化处理的模型与原模型的可能对比如下图所示:
2. 正则化线性回归
(1)基于梯度下降
正则化线性回归的代价函数为:
如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对θ0进行正则化,所以梯度下降算法将分两种情形:
转换一下,可以写为
可见,正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令θ值减少了一个额外的值。
(2) 正规方程
3. 正则化逻辑回归
相应的代价函数:
梯度下降算法:
虽然正则化的逻辑回归中的梯度下降和正则化的线性回归中的表达式看起来一样,但由于两者的h(x)不同所以还是有很大差别。
Andrew Ng机器学习课程笔记(三)之正则化的更多相关文章
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归 R ...
随机推荐
- H5总结
1.新增的语义化标签: <nav>: 导航 <header>: 页眉 <footer>: 页脚 <section>:区块 <article> ...
- web-day16
第16章WEB16-Listener&Filter篇 今日任务 使用过滤器完成自动登录的案例 使用过滤器统一网站的字符集编码 教学导航 教学目标 了解常见的监听器 理解过滤器的生命周期 能够使 ...
- jvm调优的分类
本文部分内容出自https://blog.csdn.net/yang_net/article/details/5830820 调优步骤: 衡量系统现状. 设定调优目标. 寻找性能瓶颈. 性能调优. 衡 ...
- bzoj网络流
近期看了一些bzoj的网络流,深感智商不够.不过对于网络流又有了进一步的理解. 还是mark一下吧. 献上几篇论文:1)<最小割模型在信息学竞赛中的应用> 2)<浅析一类最小割问题& ...
- shell 命令 查看本机ip
ifconfig 结果有很多,查看env0的inet,就是本机的ip地址
- hdu 1.2.4
采用异或... #include<stdio.h> int main() { //freopen("input.txt","r",stdin); i ...
- PKI信息安全知识点
1. 什么是X.509? X.509标准是ITU-T设计的PKI标准,他是为了解决X.500目录中的身份鉴别和访问控制问题设计的. 2. 数字证书 数字证书的意义在于回答公钥属于谁的问题,以帮助用户安 ...
- 【CF600E】 Lomsat gelral
CF600E Lomsat gelral Solution 考虑一下子树的问题,我们可以把一棵树的dfn序搞出来,那么子树就是序列上的一段连续的区间. 然后就可以莫队飞速求解了. 但是这题还有\(\T ...
- nginx,gunicorn常用命令
nginx 启动: 在下载nginx的目录下直接输入nginx回车 停止: nginx -s stop 重启: nginx -s reload 查看当前运行进程: ps -ef | grep ngin ...
- Linux防火墙配置与管理(16)
防火墙指的是一个由软件和硬件设备组合而成.在内部网和外部网之间.专用网与公共网之间的边界上构造的保护屏障.是一种获取安全性方法的形象说法,它是一种计算机硬件和软件的结合,使Internet与Intra ...